Клапаны или клапана


клапан — Викисловарь

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. кла́пан кла́паны
Р. кла́пана кла́панов
Д. кла́пану кла́панам
В. кла́пан кла́паны
Тв. кла́паном кла́панами
Пр. кла́пане кла́панах

кла́-пан

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -клапан- [Тихонов, 1996].

Произношение[править]

Семантические свойства[править]

Работа клапанов [1] газораспределительного механизма ДВС Работа клапанов [5] сердца
Значение[править]
  1. крышка, диск, прикрывающие отверстие, через которое проходит пар, газ, жидкость и т.п. (в машинах и механизмах) ◆ При этом выделяются и анализируются виброимпульсы начала и конца топливоподачи, а также работы клапанов газораспределения, ударов перекладки поршней и "звучания" поршневых колец в случае сухого трения. «Для диагностики тепловоза комплекс «Магистраль»», 2001 г. // «Локомотив» (цитата из Национального корпуса русского языка, см. Список литературы)
  2. деталь механизма в музыкальных духовых инструментах, служащая для открывания и закрывания отверстия в корпусе и изменения тем самым высоты извлекаемого звука ◆ Отсутствует пример употребления (см. рекомендации).
  3. кнопка клавиши гармоники ◆ Отсутствует пример употребления (см. рекомендации).
  4. нашивка из куска ткани, закрывающая карман или шов на одежде ◆ Клапан варьируется в зависимости от размеров запястья. «Аксессуары: Что натянуть на руки», 2002 г. // «Автопилот» (цитата из Национального корпуса русского языка, см. Список литературы)
  5. часть полого органа, образованная складкой (складками) его внутренней оболочки и заслоняющая какой-л. проход, отверстие (в медицине) ◆ Создан новый сердечный клапан из специальным образом обработанного свиного клапана. Анна Маева, «Дар на всю жизнь», 1999 г. // «Здоровье» (цитата из Национального корпуса русского языка, см. Список литературы)
  6. перен. нечто, сдерживающее тот или иной процесс ◆ Поставлено было несколько полубожественных подписей, верховный клапан открыли, по медицинским учреждениям разослали соответствующее циркулярное письмо, разрешающее искусственное прерывание беременности. Л. Е. Улицкая, «Казус Кукоцкого [Путешествие в седьмую сторону света]», 2000 г. // «Новый Мир» (цитата из Национального корпуса русского языка, см. Список литературы)
Синонимы[править]
Антонимы[править]
Гиперонимы[править]
Гипонимы[править]

Родственные слова[править]

Этимология[править]

Происходит от нем. Klappen (мн.) от Klappe "крышка, заслонка"; см. Бернекер 1, 509; Брандт, РФВ 21, 210. Менее вероятно влияние окончания засло́н, запо́н (Преобр. I, 311; Горяев, ЭС, 142).

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Анаграммы[править]

Библиография[править]

ru.wiktionary.org

Клапаны — Энциклопедия журнала "За рулем"

Для работы четырехтактного ДВС требуется как минимум по два клапана на цилиндр — впускной и выпускной. В настоящее время применяются клапаны тарельчатого типа со стержнем. Для улучшения наполнения цилиндра горючей смесью диаметр тарелки впускного клапана делается больше, чем у выпускного. Седла клапанов изготовленные из чугуна или стали, запрессовываются в головку блока цилиндров.
При работе двигателя клапаны подвергаются значительным механическим и тепловым нагрузкам, поэтому для их изготовления применяются специальные сплавы. Иногда для улучшения охлаждения клапанов высокофорсированных двигателей применяют клапаны с полым стержнем, который заполняется натрием. Натрий при рабочих температурах плавится и в расплавленном виде перетекает внутри клапана, перенося тепло от более нагретой тарелки клапана к стержню. Для лучшей очистки рабочей фаски от нагара и равномерной теплопередачи иногда применяются различные механизмы для вращения клапана.
ГРМ могут быть нижнеклапанными и верхнеклапанными, но в современных двигателях используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров. Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость для гарантированного закрытия клапана при работе, но жесткость пружины не должна быть чрезмерной, чтобы не увеличивать ударной нагрузки на седло клапана. Иногда для уменьшения возможности резонансных колебаний используются пружины уменьшенной жесткости, но на один клапан устанавливается по две пружины.

При использовании двух пружин они должны быть навиты в разные стороны, чтобы не произошло заклинивания клапана в случае поломки одной из пружин и попадания ее витка между витками другой пружины. Для снижения потерь на трение в ГРМ сейчас широко применяются ролики, размещаемые на рычагах и толкателях привода клапанов.

Рис. Замена трения скольжения трением качения путем применения в клапанном механизме роликов дает возможность уменьшить потери на привод клапанов

При открытии (опускании) впускного клапана через кольцевой проход между тарелкой клапана и седлом проходит топливно-воздушная смесь (или воздух) и заполняет цилиндр. Чем больше будет площадь проходного сечения, тем полнее заполнится цилиндр, а следовательно, и выходные показатели этого цилиндра при рабочем ходе будут выше. Для лучшей очистки цилиндров от продуктов сгорания желательно также увеличить диаметр тарелки выпускного клапана. Размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего, чем два, числа клапанов на один цилиндр. Встречаются трехклапанные (два впускных и один выпуск ной) системы и пятиклапанные (три впускных и два выпускных) системы.

Рис. Четырехклапанная камера сгорания. Применение газораспределительного механизма с четырьмя клапанами на цилиндр в дизельном двигателе

Впервые четыре клапана на цилиндр были использованы еще 1912 г. на двигателе автомобиля Peugeot Gran Prix. Широкое использование такой схемы на серийных легковых автомобилях началось только в 1970-е гг. Сейчас ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей. Некоторые из двигателей Mercedes имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Двигатели некоторых автомобилей группы Volksvagen-Audi и ряд японских двигателей используют пять клапанов на цилиндр (три впускных и два выпускных), но при таком числе клапанов значительно усложняется их привод.

Рис. Трехклапанный ГРМ. Компания DaimlerChrysler утверждает, что ГРМ с двумя впускными, одним выпускным и двумя свечами зажигания обеспечивает снижение вредных веществ в отработавших газах

wiki.zr.ru

КлАпана или клапанЫ) — BMW X5, 3.0 л., 2004 года на DRIVE2

Добрейшего времени суток. Продолжу череду "полезных")) постов. Благо, и материал поднакопился. По весне начал замечать небольшие косяки в работе печки. Но до последнего е воткнул в чем дело. Догадались только тогда, когда взял на дальняк пассажира на переднее кресло. В "штатных" обстоятельствах оно пустует- жена и дочь катают сзади. Короче, чувак почти 1100 км ехал поджав ноги. В ноги постоянно еб@шилО кипятком. На синие и красные стрелочки печка не реагировала. Приехал домой, подключил сканер и вуаля.

Полный размер

Ошибка

Ошибка по клапанам. Покурил форумы. Многие пишут о выходе из строя резинок внутри и от этого все болезни. Официально ремкомплектов нет и меняется в сборе весь узел(5-6к) Либо потроха переколхаживаются под резинки от вага. Но поиски на просторах тырнета привели к полному репкомплекту. Отослал номер клапанов и через неделю получил резинки.

Полный размер

Ремкомплект

Снимается все быстро.

Полный размер

Вот куда пригодились пробочки))))

Полный размер

Виновник торжества

Несем домой и потрошим. В моем случае замена резинок была бесполезна. Было поздно. Катушке пи$д@. Хотя резики были еще и ничего, но видимо одна начала потихоньку пропускать антифриз и катушка устала.

Полный размер

Полный размер

Полный размер

Угадай, какая не работает?)

Решил взять клапана с разбора, махнуть резинки и кайфовать))) Но, блин, все как обычно. Проморгал и взял клапана то ли с дореста, то ли с е38. А там катухи и все резинки соответственно больше, да и состояние их не айс.

Полный размер

Справа

Заказал еще один ремкомплект, а пока собрал так. Прокачал и получил возможность нормально рулить температурой. Засим всё. Всем удачи. И пока.
П.с.: ремкомплект на малые клапана валяется в гараже, с радостью обменяю на что нибудь полезное)))

Цена вопроса: 2 500 ₽

www.drive2.ru

какой выбрать? Особенности, отличия, эксплуатационные ограничения

Введение

При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.

В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.

1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов

1.1. Конструкция соленоидных клапанов прямого действия

Устройство наиболее простого соленоидного клапана представлено на рисунке 1.

Рисунок 1 – Конструкция соленоидного клапана прямого действия

Катушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.

Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана - "соленоидный" или "электромагнитный". Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.

Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.

Пример расчёта усилия, необходимого для втягивания сердечника

В общем случае, для любой однородной жидкой или газообразной среды, давление связано с силой следующим образом:

P=FS,P= {F} over {S}, (1)

где:
Р – давление среды;
F — усилие, оказываемое средой на поверхность;
S — площадь поверхности.

Поскольку седло клапана имеет форму окружности, то площадь рассчитывается по следующей формуле:

S=π×d24,S= { %pi times d^2 } over {4}, (2)

где:
d – диаметр седла клапана;
π — уматематическая постоянная, равная отношению длины окружности к её диаметру, приблизительно равна 3.14.

Выражая усилие F из формулы (1) и подставляя в неё значение площади S из формулы (2), получим:

F=P×π×d24.F= { P times %pi times d^2 } over {4}. (3)

Данная формула служит для расчета силы, с которой вода внутри клапана прижимает сердечник к седлу при заданном давлении P и диаметре седла d. Произведем расчет этой величины для электромагнитного клапана GEVAX 1901R-KDVD006-050-24DC (Клапан электромагнитный прямого действия, латунь, 1/2" (5 мм), 2/2 НЗ, -10°С...+130°С, 0...6 бар, 24В=, уплотнения FPM). Данные для расчета приведены в паспорте клапана: максимальное давление рабочей среды P = 6 бар, диаметр проходного сечения d = 5 мм. Подставляя эти значения в формулу (3), получим:

F=6бар×3,14×(5мм)24=600000Па×3,14×(0,005м)24=11,8H.F= { 6бар times 3,14 times (5мм)^2 } over {4}={ 600 000 Па times 3,14 times (0,005м)^2 } over {4}=11,8 H. (4)

Для корректной работы соленоидного клапана усилие втягивания сердечника, вызванное электромагнитным полем катушки, должно быть больше усилия прижима сердечника к седлу. Для обеспечения такого усилия на клапане установлена катушка AMISCO EVI 5P/13 мощностью W1 =17 Вт.

Произведем аналогичный расчет для соленоидного клапана размером 2" (диаметр седла 50мм) с рабочим давлением 10 бар. Тогда мы получим, что минимальное усилие втягивания должно составлять:

F=10бар×3,14×(50мм)24=1000000Па×3,14×(0,05м)24=1962,5HF= { 10бар times 3,14 times (50 мм)^2 } over {4} = { 1000 000Па times 3,14 times (0,05 м)^2 } over {4}=1962,5H (5)

Втягивающее усилие F, создаваемое магнитным полем катушки, приближенно, рассчитывается по формуле:

F=(I×N×μr×μ0)2L2×A2×μ0,F= { (I times N times %mu_r times %mu_0 )^2 } over {L^2} times {{A} over {2 times %mu_0}, (6)

где:
I – ток, потребляемый катушкой;
N — число витков провода внутри катушки;
µr — магнитная проницаемость сердечника;
µ0 — магнитная постоянная, равная 4π·10-7 Гн/м;
L — длина намотки провода внутри катушки;
A — площадь поперечного сечения сердечника.

Мощность W, потребляемая катушкой из электрической сети, равна:

где:
R – сопротивление катушки.

Выражая квадрат тока из формулы (7) и подставляя его значение в формулу (6), получим:

F=W×(N×μr×μ0)2×A2×L2×μ0×RF= W times (8)

Обозначим совокупность всех коэффициентов, определяемых конструкцией узла клапана "катушка-сердечник" как Kcc

Kcc=(N×μr×μ0)2×A2×L2×μ0×RK_cc= { ( N times %mu_r times %mu_0 )}^2 times A over { 2 times L^2 times %mu_0 times R } (9)

Тогда формула, втягивающего усилия катушки примет следующий вид

F=W×KccF=W times K_cc (10)

Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана "катушка-сердечник" и пропорционально электрической мощности, потребляемой катушкой.

Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:

F1W1=F2W2{F_1} over {W_1} = {F_2} over {W_2} (11)

Выражая из данного равенства W2 получим:

W2=W1F2F1{ {W_2} = W_1 {F_2} over {F_1} (12)

Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:

W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт{ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт (13)

Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.

Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.

1.2 Устройство соленоидных клапанов непрямого действия

Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.

Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембраной

В таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.

В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.

Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.

Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.

До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.

При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана). Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.

После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.

В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – "всплывает", поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.

Примеры клапанов с плавающей мембраной

Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔPмин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.

Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.

Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.

Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъем

В исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.

Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.

Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).

В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.

Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.

Примеры клапанов с плавающей мембраной

Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом. Однако, все они имеют следующие общие особенности:

  • рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
  • внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
  • большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.

1.3. Факторы, ограничивающие использование соленоидных клапанов

1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника

Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.

Рисунок 4 – Заклинивание сердечника клапана вследствие загрязнения

Также прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.

В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды. Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.

Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей среды

Для защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.

1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана

Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.

Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.

1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала

Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.

При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.

Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего "передавит" пружину и откроет клапан (см. рисунок 7).

Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапан

Определить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).

Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи среды

Однако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.

Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).

Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкости

Время открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1...2 с. Однако, за это время через клапан может пройти несколько литров жидкости.

Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.

1.4. Ключевые особенности эксплуатации соленоидных клапанов

  • Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
  • Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
  • Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.

Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.

2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом

2.1. Устройство угловых седельных клапанов с пневмоприводом

Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.

Рисунок 10 – Конструкция седельного клапана с пневмоприводом

Внутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.

Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.

Рисунок 11 – Клапан с пневмоприводом в открытом состоянии

Для закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.

Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.

Примеры угловых клапанов с пневмоприводом

2.2. Схема управления клапанами с пневмоприводом

Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.

Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.

Рисунок 12 – Пневматическая схема распределителя 3/2

Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.

До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.

При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.

На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.

Рисунок 13 – Распределительные клапаны 3/2 различных конструкций

У клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.

На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.

Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводом

Электрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).

Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).

Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управления

Каждый из этих способов монтажа имеет свои преимущества и недостатки.

Установка распределителей на клапанах с пневмоприводом

Преимущества

  1. +  Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
  2. +  Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).

Недостатки

  1. -  Необходимость прокладки двух линий до клапана: пневматической и электрической.
  2. -  Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.

Установка распределителей в шкафу управления

Преимущества

  1. +  Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
  2. +  Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
  3. +  Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).

Недостатки

  1. -  Больше время срабатывания клапанов с пневмоприводом.
  2. -  Повышенный расход воздуха.

3. Сравнение клапанов с пневмоприводом с соленоидными клапанами

Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:

  • приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
  • не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
  • менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.

Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.

Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.

Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.

Таблица 1 – Сравнение коэффициента расхода Kv клапанов разных конструкций
Тип клапана Электромагнитный клапан Клапан с пневмоприводом
Схема движения потока жидкости
Размер клапана Коэффициент расхода Kv, л/мин
DN 15 65 70 (+ 8%)
DN 20 110 150 (+ 36%)
DN 25 180 308 (+ 71%)
DN 32 250 608 (+ 143%)
DN 40 390 700 (+ 79%)
DN 50 575 910 (+ 58%)

В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют "вход под диском", на изображении справа – "вход над диском".

Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводом

Очевидно, что при подаче рабочей среды "над диском", её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.

Пример изменения рабочего давления при подаче среды над и под диском

На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.

Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-U

Рабочее давление пневмоклапана при подаче среды "под диском" составляет 6 бар, при подаче среды "над диском" – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды "над диском". Данная зависимость показана на рисуноке 19.

Рисунок 19 – График зависимости давлений рабочей и управляющей среды

По графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе "над диском") до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.

Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.

Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.

Заключение

В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.

Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.

Электромагнитные клапаны

  • +  Подключаются напрямую к электрической системе управления
  • +  Не требуют подвода сжатого воздуха
  • +  Системы на основе данных клапанов, как правило, проще и дешевле
  • -  Имеют особые требования к чистоте рабочей среды
  • -  Однонаправленные

Клапаны с пневмоприводом

  • +  Устойчивы к загрязнениям рабочей среды
  • +  Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
  • +  Как правило, двунаправленные
  • -  Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
  • -  Для работы требуют подключение сжатого воздуха

Инженер ООО «КИП-Сервис»
Быков А.Ю.

Читайте также:

totalkip.ru

ПРАВИЛЬНЫЙ ВЫБОР КЛАПАНОВ — DRIVE2

Выбор материала

При выборе клапанов для форсированного двигателя наибольшее количество вопросов вызывает именно выбор материала. Производители предлагают широкий выбор материалов, удовлетворяющий требованиям практически любого двигателя. Некоторые производители имеют в своем ассортименте один-два типа материала, заявляя при этом о его универсальности и том, что он подходит ко всем моторам. Однако если взять в расчет условия, в которых приходится работать клапанам, становится понятным необоснованность таких заявлений, один тип материала ни в коем случае не может подойти ко всем без исключения двигателям. Основная разница между впускными и выпускными клапанами состоит в различных рабочих температурах. Выпускные клапаны находятся под постоянным воздействием крайне разрушительных газов, а температуры часто превышают рубеж 760°С. Впускные же клапаны постоянно охлаждаются потоками воздушно-топливной смеси и не разогреваются до таких температур. Специфические сплавы впускного клапана при своей не слишком высокой рабочей температуре могут оказаться прочнее нержавеющей стали выпускного клапана.

Оригинальные клапаны

Значительная часть впускных клапанов изготовлена из сталистых сплавов, например, как сильхром 1, что обусловлено значительной прочностью таких сплавов в диапазоне рабочих температур, относительно невысокой стоимостью и тем фактом, что упор клапана может быть дополнительно закален для увеличения долговечности. Выпускные клапаны изготавливаются из нержавеющих сталей марок 21-2N или 21-4N, имеющих высокую термостойкость и устойчивость к окислению оксидами свинца.

Кованые клапаны из нержавеющей стали

В США эти высококачественные клапаны изготавливаются из очищенной стали 21-2N. Такие клапаны имеют цельную конструкцию и дополнительно закаленный упор. Хромирование штока и полировка поверхности — возможная дополнительная обработка.

Другие клапаны

Серия впускных клапанов "Super Duty", изготовленных из термически обработанной нержавеющей стали марки 422, разработана специально для работы в особо сложных условиях. Материал этих клапанов превосходит по качествам материалы так называемых "клапанов для тяжелых условий эксплуатации", широко представленных на рынке и имеет выдающуюся устойчивость к уставанию и растрескиванию. Выпускные клапаны премиум класса также изготовлены из высококачественного сплава 21-2N, однако в процессе производства подвергаются дополнительной термической обработке и некоторым другим операциям, существенно повышающим прочность изделия. Благодаря этому клапаны становятся способными выдерживать высокие температуры и работать на высоких оборотах.

Никелевый сплав инконель довольно редко используется в автомобильных двигателях. Он может быть необходимым в двигателях, работающих на особо высоких температурах, например, в турбированных двигателях. Титан — прочный, легкий, но вместе с тем дорогой материал, используемый преимущественно в автоспорте. Основное преимущество титана — существенное снижение веса клапана, что позволяет двигателю работать на более высоких скоростях и реализовать весь заложенный в него потенциал.

Конструкция головки клапана

Форма головки клапана и ее размеры имеют особое значение для мощности двигателя. А ключевым звеном является диаметр головки и угол седла. Клапаны, имеющие вогнутую со стороны камеры сгорания головку, — несколько легче обычных, но из-за увеличенного объема камеры сгорания имеет место некоторое падение компрессии. Диаметр головки клапана прямо пропорционально связан с интенсивностью прохождения потоков воздушно-топливной смеси и, следовательно, мощностью двигателя. То есть клапан должен иметь достаточный для свободного прохождения потоков смеси диаметр головки. Повысить мощность двигателя можно установив в головку блока клапаны с увеличенным диаметром головок. Такие клапаны, однако, имеют и недостаток — заметное снижение пиковой мощности и крутящего момента. Выбор диаметра клапана в итоге оказывается компромиссом между низкими оборотами и пиковой мощностью, определяющим же фактором при этом является предназначение двигателя. В обычных, нетурбированных двигателях, диаметр головки впускного клапана больше диаметра выпускного на 25%.

Угол седла клапана

Угол седла клапана обычно определяется производителем двигателя, хотя измерить его можно в любой мастерской. Даже если в распоряжении мастерской имеется гидростенд, лучше не испытывать судьбу и следовать рекомендациям производителя относительно угла седла, поскольку его значение имеет огромное значение. При обработке седла клапана необходимо уделять особое внимание точности. Для того, чтобы контактная поверхность седла соприкасалась с нужной точкой фаски клапана и имела требуемую ширину (1,15 — 1,5 мм), седло должно быть обработано под несколькими углами. Профессионально обработанные седла могут существенно повысить мощность двигателя. При измерении углов нужно быть внимательным, в некоторых двигателях, как, например, у двигателя Honda S2000, имеют место сужающиеся углы.

Обработка нижней части головки клапана — полировка

Форма нижней части головки клапана и качество ее обработки также влияет на прохождение потоков смеси через клапан. Нижняя поверхность головок высококачественных клапанов проходит специальную механическую обработку, повышающую прочность клапана и облегчающую прохождение потоков смеси. Полировка имеет несколько положительных сторон. Во-первых, благодаря удалению с поверхности всех неровностей первичной обработки облегчается прохождение потоков смеси, а во-вторых, в процессе полировки удаляются все возможные концентраторы напряжения.

Конструкция штока клапана — диаметр и выточка на штоке

Именно шток является опорой поверхностью, контактирующей с направляющей клапана. Упор же клапана должен обладать достаточным запасом прочности, способным выдерживать постоянные нагрузки, передаваемые на клапан качающимся рычагом. Диаметр штока зависит от того, какой вес и запас прочности ожидается от клапана. Некоторые клапаны премиум-класса имеют вырезку на штоке. Вырезка уменьшает диаметр в области ниже направляющей и ощутимо увеличивает проходимость смеси при низком подъеме головки клапана. При этом слегка снижается вес клапана. Существенно снизить вес клапана можно уменьшив диаметр его штока.

Покрытие клапана и его зазор

Хромирование штока клапана увеличивает его долговечность в условиях недостаточного смазывания. Это особенно актуально для сильно разогревающихся выпускных клапанов. В настоящее время покрытие имеют все более или менее качественные клапаны, что позволяет удовлетворить требованиям самых строгих масло сберегающих технологий. Зазор между штоком клапана и направляющей зависит от многих факторов: диаметра штока, предназначения двигателя, свойств материала направляющей и типа сальника клапана. Клапаны, имеющие недостаточный зазор могут привести к значительно большим повреждениям двигателя, чем клапаны с чрезмерным зазором. Наиболее распространенные значения зазора впускных клапанов — 0,04-0,06 мм, выпускных — 0,05-0,075 мм.

Конструкция замка клапанной пружины

Наиболее распространенная конструкция замка клапанной пружины — прямоугольной формы канавка. Компоненты такого замка представлены в широком ассортименте форм и типов материалов. Кроме этого свою эффективность доказали и многоканавочные замки, позволяющие клапану вращаться независимо от пружины и ее тарелки. Благодаря этому достигается равномерный износ и чистота контактных поверхностей фаски клапана и седла, а это в свою очередь увеличивает долговечность клапана. И хотя среднестатистический автомобиль великолепно работает с многоканавочной конструкцией замка тарелки пружины, для форсированных двигателей рекомендуется одноканавочная конструкция. Полукруглая форма канавки замка, не имеющая острых углов прямоугольной объективно нужна только в клапанах с очень маленьким диаметром штока, работающих на пределе прочности. Поломка клапана в области канавки замка — довольно нетипичное явление.

Конструкция упора клапана

Упор клапана должен обладать достаточным запасом прочности, чтобы противостоять постоянному давлению качающегося рычага. Нержавеющую сталь невозможно закалить до такого уровня, чтобы она выдерживала подобные нагрузки, поэтому упор необходимо либо наваривать, либо делать съемным. Сплавы не на основе нержавеющей стали хорошо поддаются закалке и не нуждаются в наварных упорах или других укрепленных элементах. Шток клапана с многоканавочной конструкцией замка должен быть закален в области канавок либо наварен, если материал головки — нержавеющая сталь.

Вес клапана

Вес двигателя может быть фактором, ограничивающим обороты двигателя. Этот фактор обязательно нужно учитывать при его конструировании. При этом учитывая больший размер впускных клапанов им нужно уделять особое внимание. Вырезка на штоке клапана — незначительное снижение веса. Большого результата можно добиться уменьшив диаметр штока клапана. Титановые клапаны хотя и дорого стоят, но имеют существенно меньший вес, что благотворно сказывается на оборотах двигателя и долговечности пружин клапанного привода.

Зазор между поршнем и клапаном

Ни один клапан не выдержит удара о поршень. Основной причиной выхода из строя головок блока является именно такие удары. Рекомендуемый зазор между ними — 2,5 мм, хотя это значение и может показаться слишком большим. Безусловно. Меньший зазор обеспечит лучшие результаты, но при этом придется жертвовать надежностью двигателя.

Материалы для производства клапанов

Материалы для производства клапанов должны удовлетворять всем требованиям двигателя. Термин "нержавеющая сталь" обычно применяется по отношению ко сплавам стали, содержащим как минимум 10% хрома. Как будет показано ниже, сплав сильхром 1 приближается к этому уровню при том что стоимость его остается на уровне дешевых высокоуглеродистых сплавов.

Sil XB, 422, 21-2N и 21-4N: сплавы нержавеющей стали.

1541: высокоуглеродистая сталь с добавками марганца, повышающими коррозионную устойчивость. 8440: стальной сплав, пригодный для производства работающих под повышенными нагрузками клапанов. Для повышения термостойкости в сплав добавлен хром.

Sil1: стальной сплав с 8,5% содержанием хрома, пригодный для производства работающих с повышенными нагрузками клапанов. Используется для изготовления высококачественных впускных клапанов.

Sil XB: ферритный сплав, содержащий 20% хрома и 1,3% никеля. Используется для производства впускных клапанов. Работающих под высокими нагрузками.

422: сплав нержавеющей стали, используемый для изготовления высококачественных впускных клапанов. Сплав разработан специально для впукных клапанов, диапазон рабочих температур его не подходит для изготовления выпускных клапанов. Клапаны из этого сплава часто имеют обозначение "для жестких условий".

Ti-6: титан — легкий неферритный материал, применяемый для изготовления клапанов, работающих в высокооборотистых спортивных двигателях. Он на 40% легче стали и сохраняет прочность при высоких температурах. Обычно из титана изготавливаются впускные клапаны большого диаметра, хотя можно встретить и выпускные клапаны из этого материала.

21-2N: аустенитный стальной сплав, содержащий 21% хрома и 2% никеля. Наиболее популярный материал для изготовления выпускных клапанов, сохраняет свойства при существенных повышениях температуры. Благодаря дополнительной обработке характеристики клапана из такого материала можно приблизить к оптимальным. В итоге получается недорогой и очень качественный клапан.

21-4N: аустенитный стальной сплав похожий по качествам на 21-2N, но с более высоким содержанием никеля (4%). Используется как альтернатива сплаву 21-2N.

www. sp-vms.com

PS посоветуйте, как быть, стоковые клапана колбеншмидта 331033 и EA v94148
полировать или нет ?

старый впускной клапан с нагаром из-за убитых колпачков маслосъемных и новый для сравнения

выпускные клапана

втулки клапана

вопрос родился из-за того что на впускных клапанах кокс не облазит даже абразивом … из-за шероховатости поверхности. поэтому решил заменить клапана что бы не мучатся и сейчас делема. может их отполировать что бы кокс к ним не прилипал ?

www.drive2.ru

КЛАПАН - это... Что такое КЛАПАН?

  • КЛАПАН — (нем. Klappe). 1) небольшая пластинка, закрывающая отверстия духовых инструментов, трубок и пр. 2) лоскут материи, которым прикрывается карман. 3) всякая заслонка, задвижка, делаемая в виде дверец или отворяющейся крышки. Словарь иностранных слов …   Словарь иностранных слов русского языка

  • КЛАПАН — КЛАПАН, в бензиновом или дизельном двигателе устройство, регулярно открывающее и закрывающее впускную и выпускную части камеры сгорания или цилиндра двигателя. Состоит из диска, прикрепленного к стержню, который удерживается пружиной напротив… …   Научно-технический энциклопедический словарь

  • КЛАПАН — КЛАПАН, клапана, муж. (нем. Klappe). 1. Род крышки на небольшом отверстии в каком нибудь механизме, открывающей и закрывающей это отверстие во время действия механизма. (тех.). Клапан нагнетательного насоса. Предохранительный клапан (клапан в… …   Толковый словарь Ушакова

  • КЛАПАН — (Palm) полоса парусины, пришитая у места соединения двух частей тента или чехла. Служит для прикрытия просвета в месте шнуровки, образующегося при соединении этих частей. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское… …   Морской словарь

  • клапан — вентиль, поршень, заслонка, створка; вантуз, рот, кингстон, клапанок, детандер, пистон, клинкет, сапун, дроссель, нашивка, суфлер, гульфик, снорт Словарь русских синонимов. клапан сущ., кол во синонимов: 25 • автоклапан (1) …   Словарь синонимов

  • КЛАПАН — (от нем. Klappe крышка заслонка), в технике деталь или устройство для управления расходом газа или жидкости изменением площади проходного сечения (напр., дроссельные, предохранительные, регулировочные) …   Большой Энциклопедический словарь

  • КЛАПАН — КЛАПАН, а, муж. 1. Деталь или устройство, род регулирующего затвора в механизме, инструментах. Регулировочный, предохранительный, всасывающий к. К. трубопровода. К. музыкального инструмента. 2. Нашивка из куска материи, прикрывающая отверстие… …   Толковый словарь Ожегова

  • КЛАПАН — муж., нем. закрышка, покрышка, заставка; в насосах: замычка, глотник, вздошник, запирка, зажимка, затулка, затворка; в муз. духовых орудиях: затулка над дырочкой, для перебору пальцами; в сердце и в чернокровных сосудах: затулка, затворка,… …   Толковый словарь Даля

  • КЛАПАН — деталь самых разнообразных форм, служащая для открытия или закрытия отверстий. То и другое осуществляется либо путем отодвигания и придвигания К. вдоль осевой линии отверстия (осевые или обыкновенные К.), либо путем поворота К. вокруг оси,… …   Технический железнодорожный словарь

  • клапан — КЛАПАН, а, м. (мн. а, ов). 1. Рот Чего клапана то пооткрывали? 2. Дурак, недоумок …   Словарь русского арго

  • клапан — клапан, мн. клапаны, род. клапанов и в профессиональной речи клапана, клапанов …   Словарь трудностей произношения и ударения в современном русском языке

  • dic.academic.ru

    какие бывают, чем отличаются и какой обратный клапан лучше?

    Обратный клапан — это небольшой запорный элемент, который предотвращает движение потока в трубопроводе в обратную сторону и поддерживает необходимый напор в системе. Это защита от прорывов труб, поломок котлов или насосного оборудования и не только. Для чего нужен обратный клапан в водопроводе? Как выбрать оптимальный тип устройства? Что учесть при монтаже? Ответим в статье.

    Для чего нужны обратные клапаны?

    Механическое устройство, которое пропускает поток воды только в одну сторону, называется обратным клапаном. Принцип его действия заключается в том, что при противоположном направлении потока жидкости или газа срабатывает затвор. При монтаже отопительных и водопроводных систем часто возникает необходимость исключить обратный поток. Поэтому клапаны незаменимы в следующих случаях:

    • для обеспечения стабильной работы трубопроводной системы, в том числе для исключения гидравлического удара, предотвращения протечек бытовой техники: без обратного клапана отработанная вода из слива может после окончания стирки попасть назад в барабан стиральной машины;
    • чтобы минимизировать риск попадания лишнего воздуха в водопровод, что может привести к разрыву трубы и затоплению помещения;
    • для экономии электроэнергии в системе с электробойлером: обратный клапан не даст вытечь горячей воде при аварийном отключении прибора и к тому же защитит его от скачков давления в водопроводе;
    • для обеспечения подачи воды в отдельных жилых домах, когда вода подается из скважины с помощью насоса. Если подающий насос отключен, при помощи обратного клапана в системе поддерживается нужный рабочий напор. К тому же вода не направляется обратно в скважину, так что не требуется лишней траты электроэнергии для того, чтобы ее вернуть.

    Возможности обратных клапанов используются в различных направлениях сантехнических работ:

    • при монтаже и ремонте водопровода жилищно-коммунальные службы устанавливают обратные клапаны на стояках. Благодаря этому вода не идет из труб с б о льшим давлением в трубы с меньшим;

    На заметку

    Жильцы многоквартирных домов иногда отмечают погрешности в показаниях счетчиков. Такие сбои могут происходить именно из-за отсутствия или неправильного монтажа обратных клапанов: из-за разницы рабочего давления в системах водоснабжения холодная вода попадает в трубопровод с горячей.

    • во время монтажа бойлеров обязательно устанавливают обратные клапаны на входе холодной воды: как было указано выше, это защищает прибор от неисправностей при скачках давления воды и аварийном отключении;
    • в обвязке котельного оборудования: клапан устанавливается в обводном трубопроводе (байпасе), чтобы при отключении насоса обеспечивалась естественная циркуляция теплоносителя по системе, что поддержит ее в рабочем состоянии;
    • в загородных домах с собственными скважинами обратный клапан устанавливается перед погружным насосом. Если насос остановится, клапан не даст воде слиться и предотвратит раскрутку рабочего колеса насоса в обратную сторону, ведь это может ему навредить;
    • в частных домах, где для различных целей установлено несколько контуров отопления с разными насосами, обратный клапан ставится так, чтобы больший насос не вызывал обратное движение воды, иначе может выйти из строя котел или даже вся система, и придется выделить значительные средства на ремонт.

    Какие бывают обратные клапаны для воды: рассматриваем типы

    Чтобы выбрать лучший обратный клапан, нужно отталкиваться от цели установки и конструкции системы. Различные виды клапанов работают по разному принципу.

    • Шаровой . Запорный элемент сделан в виде шара, покрытого максимально износоустойчивым синтетическим герметиком. Шарик поднимается, когда вода идет в правильном направлении, и опускается, перекрывая воду, при движении потока в обратную сторону.
      Шаровые клапаны не обязательно менять полностью после износа — их можно отремонтировать. Но и поломки случаются очень редко, потому что элементы устройства не трутся друг об друга. Из минусов — необходимость большого пространства, чтобы разместить подъем клапана, а также достаточно высокое давление — от 25 бар, потому что при меньшем давлении шаровой клапан не сработает. В ЖКХ он обычно применяется в трубопроводах с маленьким диаметром.
    • Дисковый , он же пружинный обратный клапан. Внутри помещается пружина с закрывающим элементом на одном конце. Когда вода идет в нужную сторону, пружина сжата и пропускает воду. При обратном потоке пружина разжимается, устанавливая затвор поперек хода.
      Клапаны такого рода довольно недорогие и не требуют техобслуживания. Но постепенно внутри такого устройства образуются минеральные отложения, и тогда клапан придется заменить полностью. Также в совсем дешевых моделях пружина может разжиматься слишком резко, что повышает риск гидроудара. Но более современные варианты оборудованы механизмом, благодаря которому пружина срабатывает плавно.
      Эта модель используется как в бытовых водопроводах, так и в разных отраслях промышленности. Не подходит она только для вязких сред, а также загрязненных или содержащих твердые включения.
    • Поворотный обратный клапан, который также называют лепестковым, представляет собой пластинку-лепесток на шарнирах, которая откидывается при прямом потоке воды и закрывается при обратном.
      У поворотных клапанов нет пружин, которые собирают минеральные отложения и быстро изнашиваются. Кроме того, такие клапаны тоже недорогие. Они чаще всего используются в системах водопровода ЖКХ и отопления частных домов.
    • Двустворчатый клапан — это вариант поворотного, когда лепестков два и они распахиваются от прямого потока, пропуская его с двух сторон. У таких моделей повышенное гидравлическое сопротивление, поэтому скорость движения жидкости ниже. Их часто устанавливают при сложной рабочей среде (морская вода, нефть), потому что можно выбрать подходящий под нее уплотнительный материал.

    Чтобы решить, какой обратный клапан для воды выбрать, стоит обратить внимание на способ его монтажа: подойдет ли он для конкретной системы водопровода или отопления.

    • Фланцевые обратные клапаны. Крепятся при помощи специальных элементов в виде дисков. Чаще всего бывают шаровыми. Из-за повышенной прочности устанавливаются даже на больших диаметрах. Изготавливаются обычно из стали.
    • Межфланцевые обратные клапаны устанавливаются, как следует из названия, между фланцами. Также изготавливаются из стали. Имеют компактные размеры и более низкую стоимость, чем фланцевые.
    • Муфтовые . Крепление муфтового обратного клапана — это резьба. Поэтому такие модели очень просты в монтаже. Обычно муфтовые запорные устройства бывают дисковыми. Их часто используют для водопроводных систем многоквартирных и частных домов.
    • Сварные . Выполняются из стали. Обеспечивают полную герметичность соединения. Однако имеют и недостатки, такие как невозможность обслуживания, сложность демонтажа и замены. Широко используются в энергетике при больших давлениях и высоких температурах.

    Особенности монтажа

    Чтобы обратный клапан исправно выполнял свою функцию, важно не только правильно выбрать устройство — с учетом диаметра, материала и способа монтажа, но и ответственно подойти к его установке. Вот несколько нюансов, которые необходимо учитывать в процессе монтажа обратного клапана:

    • устанавливать обратный клапан нужно по направлению потока. На корпусе клапана всегда есть пометка в виде стрелки, которая указывает правильное направление;
    • нужно обеспечить доступность обратного клапана для ремонта в случае поломки, исключение составляют приварные элементы;
    • установка клапана на насосную станцию производится либо в начале всасывающей трубы, либо перед самим насосом;
    • при монтаже обратного клапана на водонагреватель нужно отключить устройство от сети и перекрыть воду, а также полностью опустошить бак;
    • если клапан устанавливается на счетчик воды, его следует поместить между счетчиком и вентилем;
    • в горячем и холодном водопроводе разное давление, поэтому лучше на каждую магистраль установить отдельный клапан, иначе могут происходить сбои температуры воды;
    • для уплотнения соединений можно использовать паронитовые прокладки. При этом нужно следить за тем, чтобы они не уменьшали диаметр отверстия, через которое проходит поток. Иначе прокладки повысят давление;
    • чтобы обратный клапан не испортился из-за загрязненной рабочей среды, лучше всего поставить перед ним фильтр грубой очистки. Так клапан прослужит значительно дольше;
    • для увеличения продолжительности эксплуатации следует также исключить излишнее давление других элементов системы на корпус обратного клапана.

    К сожалению, на рынке немало подделок под известные бренды и просто низкокачественной продукции. Поэтому при покупке обратных клапанов стоит обратиться к проверенному продавцу с высокой репутацией.

    www.kp.ru

    Клапан или задвижка?

    Итак, в чем же отличие клапана (вентиля) от задвижки? Разница между этими типами арматуры обусловлена конструкцией их запорных органов.

    В вентилях поток рабочей среды (жидкость или газ) перекрывается при помощи клапана, который прижимается к седлу в горизонтальных плоскостях, параллельных потоку, для чего производится двойной изгиб потока газа или жидкости под углом девяносто градусов. При этом повышается сопротивление.


    Клапан снабжен плоским тарелкообразным или конусоидальным затвором, который и совершает возвратно-поступательные движения по поверхности седла. В задвижках поток перекрывается благодаря заслонке или конусу, опускаемому перпендикулярно направлению движения потока.

    Блокирующий элемент задвижек может либо полностью перекрывать поток рабочей среды, либо быть полностью открытым; вентили, в свою очередь, могут выполнять функцию регулирующих элементов.

    В том случае, если в системе применяются трубы диаметром от 300 мм, а также при высоком давлении эффективней использовать задвижки. Если перед вами стоит вопрос экономии, то клапан – лучшее решение. Его низкая стоимость обуславливается простотой конструкции устройства. В тоже время, при высоком давлении не возникает трудностей при вращении рукоятки. Однако высокое давление создает дополнительную нагрузку, так как оно «пытается» оттеснить клапан от седла. В задвижках же отсутствуют изгибы, поэтому такой нагрузки нет.

    Если клапан сконструирован правильно, то между проходными, входными и выходными отверстиями не наблюдается сужения. При применении задвижек имеется несколько вариантов. Как правило, в трубопроводных системах монтируются полноприводные задвижки, в которых диаметры трубопровода и проходных отверстий полностью совпадают. Однако зачастую, для снижения крутящих моментов устанавливают суженные задвижки. Таким образом, снижается износ уплотнительных поверхностей.

    В результате воздействия одностороннего давления потока рабочей среды на заслонку обеспечивается ее более плотное прилегание к седлу, что делает задвижки более надежным оборудованием.

    Клапаны могут выполнять регулирующую функцию, в то время как задвижки только перекрывают поток, т.е. они либо полностью открыты, либо полностью закрыты.

    Задвижки классифицируются в зависимости от конструкции, используемых материалов, типу управлении и присоединения. В каталоге на нашем сайте представлены все виды задвижек c DN от 10 до 1500.

    Свяжитесь с нами любым удобным для вас способом, и наши специалисты решат вопрос с подбором необходимой трубопроводной арматуры по наиболее выгодным ценам в кратчайшие сроки!

    Возврат к списку

    ngs-penza.ru

    Обратный клапан — Википедия

    Разновидности обратных клапанов:
    1. Обратный клапан с заслонкой;
    2. Обратный клапан с пружиной;

    Обратный клапан — вид защитной трубопроводной арматуры, предназначенный для недопущения изменения направления потока среды в технологической системе. Обратные клапаны пропускают среду в одном направлении и предотвращают её движение в противоположном, действуя при этом автоматически и являясь арматурой прямого действия (наряду с предохранительными клапанами и регуляторами давления прямого действия). С помощью обратной арматуры возможно защитить различное оборудование, трубопроводы, насосы и сосуды под давлением, увеличить продолжительность работы оборудования[1], а также существенно ограничить течь рабочей среды из системы при разрушении её участка.

    Применяются обратные клапаны с различными запорно-регулирующими элементами, например, в виде шарика или конуса. Обычный гидравлический обратный клапан состоит из корпуса, шарика и пружины 2. При движении жидкости в прямом направлении запорно-регулирующий элемент отжимается от седла и поток с минимальными потерями проходит через рабочее окно клапана. При обратном направлении потока жидкость прижимает запорно-регулирующий элемент к седлу. Движение жидкости в этом направлении прекращается. Пружины предназначены лишь для преодоления сил трения при посадке запорного элемента на седло. Так как пружины приводят к увеличению перепада давления на клапане при прохождении потока в прямом направлении, а допустимая величина перепада давления на обратных клапанах составляет 0,01…0,03 МПа, то жесткость пружин обычно выбирают минимальной. Обратные клапаны изготавливаются как отдельно, так и встроенными в узлы и агрегаты. На корпуса обратных клапанов наносят стрелку, указывающую направление движения рабочей жидкости через клапан.[2]

    Важность функции этих устройств заключается в том, что они выполняют свою задачу как в режиме нормальной эксплуатации, например в случае объединения напорных линий нескольких насосов в одну, на каждой из них устанавливается один или несколько обратных клапанов для защиты от давления работающего насоса остальных, так и в аварийных ситуациях, например при аварийном падении давления на одном из участков трубопровода, на смежных давление сохраняется, что может привести к образованию обратного тока среды, недопустимого для нормальной работы системы и опасного для её оборудования.

    Обратные клапаны используются:

    • в гидроприводах с замкнутой циркуляцией рабочей жидкости как подпиточные клапаны;
    • в гидроприводах, состоящих из нескольких насосов, для исключения взаимного влияния при их одновременной работе;
    • в блоках фильтрации, устанавливаемых в реверсивных гидролиниях, для обеспечения движения жидкости через фильтр только в одном направлении;
    • в гидролиниях, где требуется однонаправленное движение жидкости.[2]

    Основными видами обратных клапанов являются собственно обратные клапаны и обратные затворы, главное их различие — в конструкции затвора (элемента, который перекрывает поток среды, садясь в седло), у первых он выполняется в виде золотника, у вторых — в виде круглого диска, который часто именуют захлопка.

    Обратные клапаны как правило устанавливаются на горизонтальных участках трубопроводов, а затворы — как на горизонтальных, так и на вертикальных участках. По направлению потока рабочей среды клапаны обратные в основном выполняются проходными (направление потока в них не изменяется), но встречаются и угловые (направление потока меняется на 90°), а затворы обратные — только проходными[3][4].

    Устройство обратного (подъёмного) клапана. Золотник выделен красным

    При отсутствии потока среды через арматуру золотник в обратном клапане или захлопка в обратном затворе под действием собственного веса или дополнительных устройств (например пружины) находятся в положении «закрыто», то есть затвор находится в седле корпуса. При возникновении потока затвор под действием его энергии открывает проход через седло. Ясно, что для того, чтобы поток среды изменил своё направление на противоположное он должен остановиться. В этот момент скорость потока становится нулевой, затвор возвращается в исходное закрытое положение, а давление с обратной стороны прижимает золотник или захлопку, препятствуя возникновению обратного потока среды. Таким образом, срабатывание обратной арматуры происходит под действием самой среды и является полностью автоматическим[3].

    Обратный клапан[править | править код]

    Обратные клапаны до 1982 года в СССР назывались подъёмными клапанами[5], затвором в них служит золотник, который перемещается возвратно-поступательно по направлению потока среды через седло.

    По конструкции и технологии изготовления обратные клапаны проще, чем клапаны других типов, при этом позволяют обеспечить надёжную герметичность, но такие устройства более чувствительны к загрязнённым средам, при воздействии которых возможно заедание клапана.

    В обратных клапанах ось прохода в седле корпуса и, соответственно, ось подъёма золотника расположены как правило перпендикулярно оси трубопровода. Корпус обратного клапана практически аналогичен корпусу запорного клапана, но крышки и золотники обратных и запорных клапанов существенно отличаются. Золотник обратного клапана имеет хвостовик, который перемещается по направляющей в крышке клапана. Чаще всего посадка золотника на седло происходит под действием собственного веса, что требует установки обратных клапанов только на горизонтальных участках трубопроводов. Чтобы обеспечить посадку золотника на седло при установке клапана на вертикальных или наклонных участках, используют пружину в качестве дополнительного прижимного элемента.

    Имеются конструкции обратных клапанов специально для вертикальных трубопроводов, например:

    Шаровой обратный клапан.
    Шаровые обратные клапаны[править | править код]

    Затвором в них служит шаровой элемент, а прижимным элементом — пружина. Такие обратные клапаны обычно применяются на малых диаметрах трубопроводов, в основном в сантехнике.

    Приёмные обратные клапаны[править | править код]

    Такие устройства устанавливаются на конце вертикального всасывающего трубопровода перед насосом. Они имеют сетку, предохраняющую насос от попадания в него со средой твёрдых частиц или посторонних предметов. Такие клапаны изготовляются с диаметрами до 200 мм. На рисунке слева изображена приёмная сетка таких устройств.[3]

    Обратный затвор[править | править код]

    Стальной обратный затвор. Устройство обратного затвора (поворотного обратного клапана). Вид на захлопку изнутри

    Ранее эти устройства назывались поворотными обратными клапанами[5]. В отличие от большинства видов обратных клапанов, в обратных затворах ось седла совпадает с направлением потока среды через затвор. Седло при отсутствии потока через него перекрывается захлопкой (на рис. справа выделена красным цветом, на рис. слева вид на захлопку изнутри), которая закреплена на оси, расположенной выше оси прохода. Под действием среды захлопка поворачивается на некоторый угол, открывая ей проход, при остановке потока захлопка под собственным весом падает на седло. В затворах с большими диаметрами при этом происходит удар захлопки о седло, что со временем может привести к выходу затвора из строя и появляется возможность гидравлического удара в системе при срабатывании устройства. В связи с этим обратные затворы делятся на[4]:

    Простые[править | править код]

    Затворы с диаметрами до 400 мм, в которых ударные явления не оказывают серьёзного влияния на работу затвора и систему, в которой он установлен.

    Безударные[править | править код]

    Затворы со специальными устройствами, которые делают посадку захлопки на седло более плавной и мягкой. В качестве таких устройств применяются гидравлические демпферы и грузы, устанавливаемые на захлопку непосредственно, или с помощью рычага. Существенный минус безударных конструкций заключается в невозможности их установки на любых участках трубопровода, кроме горизонтальных. В целом обратные затворы имеют ряд преимуществ перед обратными клапанами, среди которых меньшая чувствительность к загрязнённым средам и возможность обеспечения работоспособности затворов для весьма больших диаметров трубопроводов, например таких как гигантский обратный затвор на рисунке, использующийся NASA в воздушных системах[3].

    Устройство пружинного дискового обратного клапана. Устройство двустворчатого обратного клапана.

    Межфланцевые обратные клапаны[править | править код]

    Межфланцевый пружинный дисковый обратный клапан. Двустворчатый межфланцевый обратный клапан. Невозвратно-управляемый обратный затвор (пока без привода). Снятие статических зарядов.

    Более компактные технические решения для уменьшения строительной длины и затрат на монтаж используются в межфланцевых пружинных дисковых и двустворчатых обратных клапанах. Основное их отличие от стандартных обратных клапанов (затворов) — отсутствие фланцев для соединения с трубопроводами. То есть конструктивные особенности клапана позволяют обойтись без увеличивающих размеры и массу оборудования ответных фланцев. При этом вес межфланцевого обратного клапана может быть в 5 раз меньше, а строительная длина — может в 6-8 раз меньше чем у аналогичных конструкций с использованием обычных обратных клапанов или затворов. Клапаны, имеющие рабочие элементы по размерам движущегося потока, монтируются во фланцевых разрывах трубопроводов с использованием соответствующих для перекачиваемого материала прокладок. Принципиальным также является возможность установки подобных клапанов не только на горизонтальных, но и вертикальных участках трубопроводов. Межфланцевые пружинные дисковые обратные клапаны могут оснащаться специальными резьбовыми отверстиями для снятия статического заряда. Подобная модификация востребована на взрывоопасных химических производствах.

    Межфланцевые пружинные дисковые обратные клапаны[править | править код]

    Принцип действия межфланцевых пружинных дисковых обратных клапанов аналогичен принципу действия шаровых обратных клапанов. Но за счет использования в качестве затвора диска (пластины) вместо шара достигаются преимущества в весе и строительной длине конструкции. По этой же причине диапазон размеров межфланцевых пружинных дисковых обратных клапанов больше и составляет 15÷200 мм. Межфланцевые пружинные дисковые обратные клапаны могут устанавливаться и в стандартном горизонтальном исполнении, а также — вертикально.

    Межфланцевые двухстворчатые обратные клапаны[править | править код]

    Диапазон размеров межфланцевых двустворчатых обратных клапанов ещё шире, чем у межфланцевых пружинных дисковых обратных клапанов — от 50 до 700 мм. В сложных и больших системах при остановках насосов или в результате каких-либо аварийных ситуаций могут возникать гидроудары, которые могут нанести существенный ущерб всей системе. В таких случаях рекомендуется использовать клапаны с амортизаторами для демпфирования гидроударов. Актуально также исполнение клапанов со специальной антикоррозионной футеровкой:

    • исполнение с пластиковой футеровкой: для питьевой воды и морской воды
    • исполнение с резиновой футеровкой: для морской воды, канализации, судостроения

    Другие конструкции[править | править код]

    Во всех описанных выше случаях обратная арматура пропускает среду в одном направлении и предотвращает её движение в противоположном, действуя при этом автоматически и являясь арматурой прямого действия, но существуют также конструкции, в которых совмещены функции обратной и запорной арматуры.

    Невозвратно-запорные — это обратные клапаны и затворы, которые возможно принудительно закрыть при помощи ручного или механического устройства (пневмо-, гидро- или электропривода).

    В невозвратно-управляемых возможно не только принудительное закрытие, но и открытие затвора[3][4][6].

    Корпусные детали обратных клапанов изготавливаются из:

    Необходимая герметичность затвора на седле обратного клапана обеспечивается специальными уплотнительными поверхностями, которые изготавливаются из:

    1. ↑ Зачем нужен обратный клапан (рус.). Дата обращения 26 ноября 2018.
    2. 1 2 Гидравлические обратные клапаны и гидрозамки (неопр.). for-engineer.info. Дата обращения 16 октября 2015.
    3. 1 2 3 4 5 6 Поговорим об арматуре. Р. Ф. Усватов-Усыскин — М.: Vitex, 2005.
    4. 1 2 3 4 Трубопроводная арматура. Справочное пособие. Д. Ф. Гуревич — Л.: Машиностроение, 1981.
    5. 1 2 В 1982 году вступил силу ГОСТ 24856-81, установивший новые термины и определения в области трубопроводной арматуры.
    6. ↑ Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С. И. Косых. — Л.: Машиностроение, 1982.

    В 2007 году взамен ГОСТ 24856-81 вступил в силу ГОСТ Р 52720-2007, установивший новые термины и определения в области трубопроводной арматуры.

    ru.wikipedia.org

    Клапаны сердца — Википедия

    У этого термина существуют и другие значения, см. Клапан. Компьютерная модель работы сердца

    Клапан — часть сердца, образованная складками его внутренней оболочки (эндокард), обеспечивает однонаправленный ток крови путём перекрывания венозных и артериальных проходов.[1]

    Анатомия, морфология и функция клапанов сердца[править | править код]

    Сердце человека (как у птиц и млекопитающих) — четырёхкамерное. Различают правое и левое предсердие, правый и левый желудочек; Между предсердиями и желудочками находятся фиброзно-мышечные входные клапаны — справа трёхстворчатый (или трикуспидальный), слева - двустворчатый (митральный). На выходе из желудочков расположены схожие по строению выходные трёхстворчатые клапаны (пульмональный справа и аортальный слева).

    Фиброзные кольца митрального и трикуспидального клапанов, а также фиброзный каркас аортального клапана, соединённые между собой с помощью мембранозной части межжелудочковой перегородки, левого и правого фиброзных треугольников, образуют фиброзный каркас сердца.[2]. Плоскость фиброзного кольца трикуспидального клапана смещена к верхушке сердца по отношению к плоскости митрального клапана, а аортальный клапан вклинен между ними. К фиброзному кольцу фиксируются створки клапанов, а также пучки миокарда предсердий и желудочков. Сложная макро- и микроструктура обеспечивает большую прочность сердечных клапанов и их высокую эластичность, позволяющую демпфировать гидравлические удары при закрытии клапанов, а в течение всего сердечного цикла — обеспечивает отдельным структурам изменение их формы и размеров.

    Структуры клапанов подвергаются различной нагрузке. Так, во время систолы левого желудочка напряжение в теле створок митрального клапана в 500—800 раз меньше, чем в точках крепления к ним краевых хорд.[3].

    Трикуспидальный клапан[править | править код]

    Трикуспидальный клапан (лат. valva atrioventricularis dextra, valvula tricuspidalis) — клапан между правым предсердием и правым желудочком сердца, представлен тремя соединительнотканными пластинками, которые предотвращают регургитацию (обратный ток) крови в правое предсердие во время систолы правого желудочка.

    Митральный клапан[править | править код]

    Митральный клапан (лат. valva atrioventricularis sinistra, valva mitralis) — двухстворчатый (бикуспидальный) клапан между левым предсердием и левым желудочком сердца. Представлен двумя соединительнотканными створками, которые предотвращают во время систолы левого желудочка регургитацию (обратный ток) крови в левое предсердие.

    Аортальный клапан[править | править код]

    Аортальный клапан (лат. valva aortae) расположен на границе левого желудочка и аорты, препятствуя обратному току крови из аорты в левый желудочек.

    У человека клапан имеет три створки, открывающиеся в сторону аорты: правую коронарную, левую коронарную и заднюю (некоронарную). Полулунные створки, смыкаясь, перекрывают отверстие, соединяющее аорту и левый желудочек. Створки крепятся к фиброзному кольцу, которое образует отверстие между аортой и левым желудочком.

    Гемодинамика работы клапана: в систолу левого желудочка под действием давления крови створки клапана открываются, и кровь поступает в аорту, затем в диастолу под давлением крови из аорты створки захлопываются, препятствуя обратному току крови в левый желудочек.

    Пульмональный клапан[править | править код]

    Пульмональный клапан (лат. valva trunci pulmonalis) расположен в месте выхода лёгочного ствола из правого желудочка. Имеет три полулунные заслонки (переднюю, правую и левую), которые обеспечивают ток крови только в одном направлении — в лёгочный ствол.

    В литературе также именуется лёгочным клапаном или клапаном лёгочного ствола.

    Евстахиева заслонка[править | править код]

    Как пятый («евстахиев») клапан сердца рассматривается заслонка нижней полой вены (лат. valvula venae cavae inferioris), впервые описанная и зарисованная Евстахием. Рудиментарный клапан, встречается в 5 % случаев (у детей может быть достаточно выражен). Как правило, не играет роли в гемодинамике сердца. Является флотирующим в кровотоке нитчатым образованием, отходящим от места впадения нижней полой вены в правое предсердие.

    При заболевании или дисфункции по причине патологии развития одного из четырёх клапанов сердца решением по восстановлению его работоспособности может быть замена естественного клапана на его протез. Как правило, это требует операции на открытом сердце.

    Клапаны являются неотъемлемой частью нормального физиологического функционирования человеческого сердца. Естественные клапаны сердца развиваются в формы, которые функционально поддерживают однонаправленный поток крови из одной камеры сердца в другую.

    Среди искусственных клапанов сердца выделяются механические и биологические конструкции.

    Приобретённые пороки[править | править код]

    Возникают на фоне перенесенных заболеваний. Пример: недостаточность митрального клапана после перенесенного ревматизма.

    Врожденные пороки[править | править код]

    Методы лечения[править | править код]

    Врожденные пороки лечатся только хирургическими методами.

    Приобретенные пороки могут лечиться двумя путями, в зависимости от степени тяжести патологии и индивидуальности патологического процесса:

    • Медикаментозное лечение направлено на лечение заболеваний, вызванных пороками. Например, лечение сердечной недостаточности, профилактика тромбоэмболий, лечение и профилактика мерцательной аритмии.
    • Комиссуротомия (от лат. «commissura» — соединение, спайка, «tomia» — рассечение)

    Этот вид операции представляет из себя рассечение спаек, которые возникают при стенозах отверстий (например, при стенозе митрального отверстия)

    • Протезирование
    1. С.И. Ожегов, Н.Ю. Шведова. Толковый словарь Ожегова. — 1949-1992.
    2. Чазов Е. И. (ред.) Руководство по кардиологии. — М.: Медицина, 1982. — Т. 1.
    3. Dagum P., Green R., Nistal F. J. Deformationaldynamiks of the aortic root: modes and physiologic determinants / Circulation. — 1989. — Vol. 100. № 19 (Suppl). — P. 54-62.
    • Проф. А. И. Арутюнов, кандидат медицинских наук Н. Я. Васин и В. Л. Анзимиров. Справочник по клинической хирургии / Проф. В.И. Стручкова. — Москва: Медицина, 1967. — С. 234. — 520 с. — 100 000 экз.

    ru.wikipedia.org

    Регулирующий клапан – электропривод, МИМ или позиционер?

    Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.

    1. Клапаны с электроприводом и трёхпозиционным управлением

    Рисунок 1 — Регулирующий шаровый клапан с электроприводом VALMA0

    Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).

    Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.

    Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).

    2. Клапаны с мембранным исполнительным механизмом (МИМ)

    Рисунок 2 — Регулирующий клапан с МИМ

    Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.

    Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).

    Рисунок 3 — ЭПП ASCO Sentronic LP

    В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.

    Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.

    Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.

    Рисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП

    Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.

    Линейность

    Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.

    Чувствительность

    Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.

    Гистериз

    Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.

    Рисунок 5 — Линейность

    Рисунок 6 — Чувствительность

    Рисунок 7 — Гистериз

    Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.

    Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.

    В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.

    Рисунок 8 — Схема контура регулирования при спользовании клапана с позиционером

    3. Позиционер управления клапаном

    Рисунок 9 — Позиционер

    Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.

    Рисунок 10 — Регулирующий клапан ASCO с позиционером

    Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.

    Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.

    Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.

    При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.

    4. Выводы

    На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.

    Клапаны с электроприводом и управлением «больше меньше»

    Рисунок 11 — Клапаны с электроприводом и управлением «больше меньше»

    Плюсы:

    • управление дискретными сигналами
    • простой и понятный принцип работы+ цена
    • требуют использования специальных регуляторов

    Минусы:

    • низкая скорость работы
    • ограниченная применимость
    • высокое энергопотребление (вызывает сложности при построении систем с автономным резервированием питания)

    Клапаны с МИМ и ЭПП

    Рисунок 11 — Клапаны с МИМ и ЭПП

    Плюсы:

    • высокое быстродействие
    • низкое энергопотребление
    • расширенная сфера применения
    • управление пропорциональным сигналом

    Минусы:

    • чрезвычайно высокая сложность компенсации нелинейностей в контуре управления
    • сложность оценки точности, особенно в динамических режимах работы
    • требует для работы сжатый воздух

    Клапаны с позиционером

    Рисунок 11 — Клапаны с позиционером

    Плюсы:

    • высокое быстродействие
    • низкое энергопотребление
    • автоматическая компенсация нелинейностей
    • лёгкое построение двухконтурной системы управления с минимумом трудозатрат
    • наиболее широкая сфера технологических применений
    • управление пропорциональным сигналом

    Минусы:

    • требует для работы сжатый воздух

    Инженер ООО «КИП-Сервис»
    Быков А.Ю.

    Дополнительные материалы:

    Читайте также:

    totalkip.ru


    Смотрите также