Какой бывает газ


Список газов — Википедия

Название Формула Температура кипения, °C Температура плавления, °C Примечания
Гелий-4 4He −268.928 не затвердевает при обычном давлении
Водород H2 −252.879 −259.16 есть орто- и пара-формы с разными температурами кипения
Неон Ne −246.046 −248.59
Азот N2 −195.795 −210.0
Угарный газ CO −191.5 −205.02
Фтор F2 −188.11 −219.67
Аргон Ar −185.848 −189.34
Кислород O2 −182.962 −218.79
Метан CH4 −182.5 −164.00
Криптон Kr −153.415 −157.37
Оксид азота(II) NO −151.74 −163.6
Дифторид кислорода F2O −144.3 −223.8
Трифторид азота NF3 −128.74 −206.79
Тетрафторметан[1] CF4 −128,0 −183.6
Моносилан[2] SiH4 −111.9 −185
транс-Дифтордиазин N2F2 −111.45 −172
Озон O3 −111.35 −193
Ксенон Xe −108.099 −111.75
цис-Дифтордиазин N2F2 −105.75
этилен CH2=CH2 −103.7 −169.2
Фторид фосфора(III) PF3 −101.8 −151.5
Фторид хлора(I) ClF −101.1 −155.6
Трифторид бора BF3 −99.9 −126.8
Фторсилан SiH3F −98.6
Трифторсилан SiHF3 −95 −131
Трифторметилгипофторит[3] CF3OF −95
Оксид азота(I) (Веселящий газ) N2O −88,48 −90,86
Фосфин PH3 −87,75 −133,8
Трифторид-оксид азота NOF3 −87,5 −161
Тетрафторсилан SiF4 −86 −90,2
1,1-Дифторэтилен CF2=CH2 −85,5 −144
Хлороводород HCl −85 −114,17
Азидотрифторметан[4] CF3N3 −85 −152
Фторид фосфора(V) PF5 −84,6 −93,8
Карбонилфторид COF2 −84,5 −111,2
Нитрозотрифторметан (трифторнитрозометан)[5] CF3NO −84 −196,6
Трифторметан[1] CHF3 −82,2 −155,15
Трифторхлорметан[1] CClF3 −81,5 −181,0
Диоксид углерода CO2 −78,46 сублимирует
Фторметан[6] CH3F −78,4 −137,8
Гексафторэтан[7] CF3CF3 −78,1 −100
Пентафторметиламин[8] CF3NF2 −78 −130
Дифторсилан SiH2F2 −77,8 −122
Тетрафторэтилен CF2=CF2 −76 −131,14
Фторацетилен[9] FCCH −74 −196
Тетрафторгидразин N2F4 −74 −164,5
Фторид нитрила NO2F −72,4 −166
Фторэтилен[10] CH2=CHF −72 −160,5
Трифторхлорсилан[11] SiClF3 −70 −138
Трифторацетонитрил[5] CF3CN −68,8
Дифторхлорамин[12] NClF2 −67 −195
Бромоводород HBr −66,38 −86,80
Бис(фторокси)дифторметан[3] CF2(OF)2 −64
Гексафторид серы (элегаз)[13] SF6 −63,8 сублимирует
Арсин AsH3 −62,5 −166
Радон Rn −61,7 −71
Пентафтор-O-метилгидроксиламин[14] CF3ONF2 −60 экстраполяция
Фторид нитрозила NOF −59,9 −132,5
Сероводород H2S −59,55 −85,5
Трифторацетилфторид[15] CF3COF −59 −159,5
Гексафтордиметиловый эфир[15] CF3OCF3 −59
Бромтрифторметан[1] CF3Br −57,75 −167,78
Метилсилан CH3SiH3 −57,5 −156,5
Диоксидифторид O2F2 −57 −163,5 кипит с разложением на кислород и фтор
Сульфурилфторид SO2F2 −55,4 −135,8
Фтордихлорсилан SiHCl2F −54,3
Транс-1,2-дифторэтилен[16] CHF=CHF −53,1
Трифторэтилен[10] CF2=CHF −53
Пентафторид мышьяка AsF5 −52,8 −79,8
Сульфид-трифторид фосфора PSF3 −52,25 −148,8
Дифторметан (фреон-32) CH2F2 −52 −136
Дифторкарбамоилфторид F2NCOF −52 −152,2
Пентафторэтилгипофторит (пентафторфтороксиэтан)[3] C2F5OF −52 −136
Станнан SnH4 −51,8 −146
Тетрафторпропин CF3C≡CF −50,39
Оксид-сульфид углерода (карбонилсульфид) COS −50,2 −138,8
Кетен CH2=C=O −49,7 −151
Оксид-тетрафторид серы(VI) SOF4 −48,5 −99,6
Пентафторэтан CF3CHF2 −48,5 −99,6
3,3,3-Трифторпропин CF3C≡CH −48,1 −100,6
Пропен CH3CH=CH2 −47,6 −185,2
Дифторид-хлорид фосфора(III) PClF2 −47,3 −164,8
Оксид-фторид-хлорид углерода COClF −47,2 −148
1,1,1-Трифторэтан CH3CF3 −47 −111,8
Трифторметилгипохлорит CF3OCl −47 −164
Перхлорилфторид ClO3F −46,75 −147
Гексафторид селена SeF6 −46,6 сублимирует
Фторциан FCN −46 −82
Нитрат фтора FNO3 −46 −175
Нитрозопентафторэтан C2F5NO −45,7
Цис-1,2-дифторэтилен FCH=CHF −45
1,1-Дифторпропен CH3CH=CF2 −44
Трифторметил(фтор)силан CF3SiH2F −44
Тионилфторид SOF2 −43,8 −110,5
Тетрафторид-хлорид фосфора(V) PF4Cl −43,4 −132
Метилдиборан CH3B2H5 −43
Трифторметилдифторфосфин CF3PF2 −43
N,N,1,1-Тетрафторметиламин CHF2NF2 −43
Пропан C3H8 −42,25 −187,7
Трифторметилтрифторсилан CF3SiF3 −42
Бромтрифторсилан SiF3Br −41,7 −70,5
Селеноводород H2Se −41,25 −65,73
Дифторхлорметан CHF2Cl −40,7 −175,42
Тетрафторид серы SF4 −40,45 −125
Цис-гексафтордиазометан CF3NNCF3 −40 −127
Оксид-трифторид фосфора POF3 −39,7 Сублимирует
Пентафторхлорэтан CF3CF2Cl −39,1 −99
Трифторметилтетрафторфосфоран CF3PF4 −39 −113
Гексафторид теллура TeF6 −38,9 Сублимирует
Винилдифторборан CH2=CHBF2 −38,8 −133,4
(Трифторметил)силан CF3SiH3 −38,3 −124
Гептафторэтиламин CF3CF2NF2 −38,1 −183
Тетрафтораллен CF2=C=CF2 −38
Гексафтороксетан C3F6O −38
Трифторметантиол CF3SH −37,99 −157,11
Фторэтан CH3CH2F −37,7 −143,2
Бис(трифторметил)пероксид CF3OOCF3 −37
Пентафторпропионитрил CF3CF2CN −37
Гептафтордиметиламин (CF3)2NF −37
Октафторпропан CF3CF2CF3 −36,8 −147,7
Тетрафторид германия GeF4 −36,5
Циклопропен C3H4 −36
Трифторметилфторформиат CF3C(O)F −36 −120
Трифторметилизоцианат CF3NCO −36
Тетрафтор-1,2-диазетидин C2F4N2H2 −36
Иодоводород HI −35,5 −50,76
Гипофторит-пентафторид серы(VI) SOF6 −35,1 −86
Трифторметил дифторметиловый эфир CF3OCHF2 −35,0 −157
Пропадиен (Аллен) CH2=C=CH2 −34,8 −136
Хлор Cl2 −34,04 −101,5
Трифторметилфторформиат FCOOCF3 −34
Тетрафтордиборан B2F4 −34 −56
Аммиак NH3 −33,33 −77,73
Нитротрифторметан CF3NO2 −32
Дифтордихлорсилан SiCl2F2 −32 −44
Дифтораминодифторацетонитрил F2NCF2CN −32
Дифторметилен-бис-дифторамин CF2(NF2)2 −31,9 −161,9
Транс-гексафтордиазометан CF3NNCF3 −31,1
Циклопропан C3H6 −31 −127,6
Монохлорсилан SiHCl3 −30,4 −118
Гексафторпропилен CF3CF=CF2 −30,2 −156,6
Хлорацетилен CH≡CCl −30 −126
Метилтрифторсилан CH3SiF3 −30 −73
Дифтордихлорметан CCl2F2 −29,8 −157,7
Тетрафтордиазиридин CF4N2 −29
Селена(VI) гипофторит-пентафторид SeF5OF −29
Тетрафтороксетан C2F4O −28,6 −117
Трифторхлорэтилен C2F3Cl −28,3 −158,14
2,3,3,3-Тетрафторпропен CF3CF=CH2 −28,3 −152,2
Метилдифторфосфин CH3PF2 −28 −110
Гексафторацетон CF3COCF3 −27,4 −125,45
Трифтор(трифторметил)оксиран CF3C2F3O −27,4
Тиазилтрифторид N≡SF3 −27,1 −72,6
Трифторацетилхлорид CF3COCl −27 −146
3,3,3-Трифторпропен CF3CH=CH2 −27
Формилфторид HCOF −26,5 −142,2
1,1,1,2-Тетрафторэтан CF3CH2F −26,1 −103,3
Перфторметилвиниловый эфир CF3OCF=CF2 −26
Метилтрифторметиловый эфир CF3OCH3 −25,2 −149,1
Бис(трифторметил)нитроксил (CF3)2NO −25 −70
Дифторхлорметилгипофторит[3] CClF2OF −25
Серы(VI) пентафторид-цианид SF5CN −25 −107
Диметиловый эфир CH3OCH3 −24,8 −141,49
Оксид серы(IV) (Сернистый газ) SO2 −10,01 −75,5
Фтордихлорметилгипофторит[3] CFCl2OF 0
Гептафторид иода IF7 +4,8
Фосген COCl2 +8.3 −118
2-Фторбутан CH3CHFCH2CH3 +25 −121

ru.wikipedia.org

Виды природного газа – состав, основные виды


Современный мир сложно представить без природного газа. Он широко используется в качестве топлива для обогрева жилья, на промышленных предприятиях, в бытовых газовых плитах и других устройствах. Двигатели многих транспортных средств также работают на газе. Что такое природный газ, и какой он бывает?

Природный газ

Это полезное ископаемое, добываемое из глубоких слоев земной коры. Природный газ содержится в огромных «хранилищах», представляющих собой подземные камеры. Часто газовые скопления соседствуют с нефтяными, но чаще расположены глубже. В случае соседства с нефтью, природный газ может быть растворен в ней. В нормальных же условиях, он пребывает исключительно в газообразном состоянии.

Считается, что этот вид газа образуется в результате гниения органических останков, попадающих в почву. Он не имеет ни цвета, ни запаха, поэтому, перед использованием потребителями, в состав вводятся ароматические вещества. Это делается для того, чтобы можно было вовремя почувствовать и устранить утечку.

Природный газ взрывоопасен. Более того, он может самовозгореться, но для этого требуется высокая температура не ниже 650 градусов Цельсия. Взрывоопасность наиболее ярко проявляется при утечках бытового газа, которые иногда приводят к обрушению зданий и человеческим жертвам. Для взрыва большой концентрации газа достаточно крошечной искры, поэтому так важно не допускать утечек из бытовых газовых плит и баллонов.

Состав природного газа разнообразен. Грубо говоря, это смесь сразу нескольких газов.

Метан

Метан является наиболее распространенным видом природного газа. С химической точки зрения, это – простейший углеводород. Он практически не растворяется в воде и весит легче воздуха. Поэтому при утечке, метан поднимается вверх, а не скапливается в низинах, как некоторые другие газы. Именно этот газ применяется в бытовых плитах, а также на газовых заправках автомобилей.

Пропан

Пропан выделяется из общего состава природного газа при определенных химических реакциях, а также высокотемпературной обработке нефти (крекинге). Он не имеет ни цвета, ни запаха, при этом представляет опасность для здоровья и жизни человека. Пропан оказывает угнетающее воздействие на нервную систему, при вдыхании большого количества наблюдается отравление, рвота. При особо большой концентрации возможен летальный исход. Также пропан является взрыво- и пожароопасным газом. Однако, при соблюдении техники безопасности, он широко применяется в промышленности.

Бутан

Данный газ также образуется при переработке нефти. Он взрывоопасен, легко воспламеняется и, в отличие от двух предыдущих газов, обладает специфическим запахом. Благодаря этому, он не нуждается в добавлении предупредительных ароматических веществ. Бутан оказывает негативное воздействие на здоровье человека. Вдыхание его приводит к дисфункции легких и угнетению нервной системы.

Азот

Азот входит в число самых распространенных химических элементов на планете. Присутствует он и в природном газе. Азот невозможно увидеть или почувствовать, так как он не имеет ни цвета, ни запаха, ни вкуса. Он широко применяется для создания инертной среды во множестве технологических процессов (например, сварка металлов), а в жидком состоянии – как хладагент (в медицине – для удаления бородавок и прочих неопасных новообразований кожи).

Гелий

Гелий выделяется из природного газа путем фракционной перегонки при низкой температуре. Он также не имеет ни вкуса, ни цвета, ни запаха. Гелий широко применяется в самых разных сферах жизнедеятельности человека. Пожалуй, самая простая из них – наполнение праздничных воздушных шариков. Из серьезного – медицина, военная промышленность, геология и т.д.

ecoportal.info

Газ — Википедия

Газ, или газообразное состояние (от нидерл. gas, восходит к др.-греч. χάος (háos)) — одно из четырёх основных агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения[1].

Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется па́ром. Реальный газ представляет собой высоко перегретый пар, свойства которого незначительно отличаются от идеального газа. В связи с этим в термодинамическом описании паров и реальных газов следует различать только два состояния — насыщенные пары (двухфазовые системы) и перегретые пары — (однофазовые газообразные состояния)[2]. Существует и другое определение понятия реальный газ, включающее весь диапазон газообразного состояния вещества от насыщенного пара до высоко перегретого и сильно разреженного.

Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма, а стремятся заполнить весь доступный объём (например, сосуда). В планетарном масштабе газ в атмосфере удерживается гравитацией и не образует свободной поверхности.

Газообразное состояние — самое распространённое состояние вещества Вселенной (межзвёздное вещество, туманности, звёзды, атмосферы планет и т. д.). По химическим свойствам газы и их смеси весьма разнообразны: от малоактивных инертных газов до взрывчатых газовых смесей. Понятие «газ» иногда распространяют не только на совокупности атомов и молекул, но и на совокупности других элементарных [квантовых] частиц (то есть на квантовую систему) — фотонов, электронов, броуновских частиц, а также плазму.

Чтобы испарить жидкость, вовсе необязательно её нагревать. Можно уменьшить атмосферное давление поднятием на высоту, либо вакуумированием.

  • Идеальный газ — газ, в котором взаимодействие между молекулами сводится к парным столкновениям, причём время межмолекулярного столкновения намного меньше среднего времени между столкновениями. Идеальный газ является простейшим модельным объектом молекулярной физики. В классической (феноменологической) термодинамике идеальный газ — гипотетический, не существующий в природе газ, в точности подчиняющийся уравнению газового состояния Клапейрона — Менделеева: PV=νRT{\displaystyle PV=\nu \;RT}
  • Реальный газ — агрегатное состояние вещества (простого тела). Состояние реальных газов достаточно точно описывается уравнением Клапейрона в условиях далёких от температуры конденсации, (высоко перегретые пары), а в условиях, близких к конденсации, где силами молекулярного взаимодействия уже нельзя пренебречь, вместо уравнения Клапейрона — Менделеева используются приближённые эмпирические и полуэмпирические уравнения. Наиболее простым и распространённым является уравнение Ван-дер-Ваальса. Известно немало попыток теоретического вывода уравнения состояния реального газа. Американский физик Д. Майер и советский математик Н. Боголюбов с помощью методов статистической физики вывели уравнение состояния реального газа в наиболее общем виде, включающее так называемые вириальные коэффициенты, являющиеся функциями только температуры. Вириальные коэффициенты не могут быть определены теоретическими методами и должны определяться с помощью экспериментальных данных[3].
  • Газ Ван-дер-Ваальса — идеализированный газ, точно подчиняющийся уравнению Ван-дер-Ваальса. Важнейшим свойством этого газа является существование в такой простой модели фазового перехода газ — жидкость.
  • Частично или полностью ионизованный газ называется плазмой (иногда называется следующим агрегатным состоянием).
  • Также газом в технике и в быту кратко называют природный газ, основу которого составляет газ метан.

Слово «газ» (нидерл. gas) было придумано в начале XVII века фламандским естествоиспытателем Я. Б. ван Гельмонтом для обозначения полученного им «мёртвого воздуха» (углекислого газа). Согласно Я. И. Перельману, Гельмонт писал: «Такой пар я назвал газ, потому что он почти не отличается от хаоса древних»[4].

Не исключено также воздействие немецкого gasen «кипеть».

В России для обозначения газов М. В. Ломоносов употреблял термин «упругие жидкости», но он не прижился.

Макроскопические характеристики[править | править код]

Большинство газов сложно или невозможно наблюдать непосредственно нашими органами чувств, они описываются с помощью четырёх физических свойств или макроскопических характеристик: давлением, объёмом, количеством частиц (химики используют моль) и температурой. Эти четыре характеристики издавна неоднократно исследовались учёными, такими как Роберт Бойль, Жак Шарль, Джон Дальтон, Гей-Люссак и Амедео Авогадро для различных газов в различных условиях. Их детальное изучение в итоге привело к установлению математической связи между этими свойствами, выраженной в уравнении состояния идеального газа.

Основной особенностью газа является то, что он заполняет всё доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ — изотропное вещество, то есть его свойства не зависят от направления. В случаях, когда силами тяготения можно пренебречь или они уравновешены другими силами, давление во всех точках газа одинаково (см. Закон Паскаля).

В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой по барометрической формуле. Соответственно, в поле сил тяжести неоднородной становится смесь газов. Тяжёлые газы имеют тенденцию оседать ниже, а более лёгкие — подниматься вверх. В поле тяготения на любое тело, погружённое в газ, действует Архимедова сила[5], которую используют для полёта воздушных шаров и других воздухоплавтельных аппаратов, заполненные лёгкими газами или горячим воздухом.

Газ имеет высокую сжимаемость — при увеличении давления возрастает его плотность. При повышении температуры газы расширяются. При сжатии газ может перейти в жидкость, если его температура ниже так называемой критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно сжижить только при температуре меньшей, чем 4,2 К.

Существуют газы, которые при охлаждении переходят в твёрдое тело, минуя жидкую фазу. Превращение жидкости в газ называется испарением, а непосредственное превращение твёрдого тела в газ — сублимацией.

Сосуществование с жидкостью[править | править код]

В определённом диапазоне температур и давлений газ и жидкость одного и того же вещества могут сосуществовать в виде равновесной двухфазовой системы. Газ над поверхностью жидкости называют насыщенным паром.

Микроскопические характеристики[править | править код]

Если бы можно было наблюдать газ под мощным микроскопом, можно было бы увидеть набор частиц (молекул, атомов и т. д.) без определённой формы и объёма, которые находятся в хаотическом движении. Эти нейтральные частицы газа изменяют направление только тогда, когда они сталкиваются с другими частицами или стенками ёмкости. Если предположить, что эти взаимодействия (удары) абсолютно упругие, это вещество превращается из реального в идеальный газ. Эта доля с микроскопической точки зрения газа описывается молекулярно-кинетической теорией. Все предпосылки, лежащие в этой теории, можно найти в разделе «Основные постулаты» кинетической теории.

Тепловое движение молекул газа[править | править код]

Важнейшей чертой теплового движения молекул газа — это беспорядочность (хаотичность) движения. Экспериментальным доказательством непрерывного характера движения молекул является диффузия и броуновское движение.

Диффузия — это явление самопроизвольного проникновения молекул одного вещества в другое. В результате взаимной диффузии веществ происходит постепенное выравнивание их концентрации во всех областях занимаемого ими объёма. Установлено, что скорость протекания процесса диффузии зависит от рода веществ и температуры.

Одним из самых интересных явлений, подтверждающих хаотичность движения молекул, является броуновское движение, которое проявляется в виде теплового движения микроскопических частиц вещества, находящихся в газе во взвешенном состоянии. Это явление в 1827 году впервые наблюдал Р. Броун, от имени которого оно получило название. Беспорядочность перемещения таких частиц объясняется случайным характером передачи импульсов от молекул газа частице с разных сторон. Броуновское движение оказывается тем заметнее, чем меньше частица и чем выше температура системы. Зависимость от температуры свидетельствует о том, что скорость хаотического движения молекул возрастает с увеличением температуры, именно поэтому его и называют тепловым движением.

Закон Авогадро[править | править код]

Закон Авогадро — одинаковые объёмы любых газов при одинаковом давлении и температуре содержат одинаковое число молекул.

Этот закон был открыт на основе опытов по химии итальянским учёным Амедео Авогадро в 1811 году. Закон касается слабо сжатых газов (например, газов под атмосферным давлением). В случае сильно сжатых газов считать его справедливым нельзя. Закон Авогадро означает, что давление газа при определённой температуре зависит только от числа молекул в единице объёма газа, но не зависит от того, какие это молекулы.

Количество вещества, содержащее число граммов, равное его молекулярной массе, называется грамм-молекулой или молем. Из сказанного следует, что моли разных веществ содержат одинаковое число молекул. Число молекул в одном моле вещества, получившее название «число Авогадро», является важной физической величиной. По ГОСТ 3651.2-97, значение постоянной Авогадро принимается:

NA = 6,0221367 · 1023 ± 0,0000036 · 1023 моль−1

Число Авогадро, по данным CODATA−2010, равно

NA = 6,02214129 · 1023 ± 0,00000027 · 1023 моль−1

Для определения постоянной Авогадро были сделаны многочисленные и разнообразные исследования (броуновского движения, явлений электролиза и др.), которые привели к достаточно согласованным результатам и являются ярким свидетельством реальности молекул и молекулярного строения вещества.

Кинетическая теория[править | править код]

Кинетическая теория даёт представление о макроскопических свойствах газов, рассматривая их молекулярное строение и движение молекул. Начиная с определения импульса и кинетической энергии, можно, используя закон сохранения импульса и геометрические зависимости, связать макроскопические свойства системы (температуру и давление) с микроскопическими свойствами (кинетической энергии одной молекулы).

Кинетическая теория объясняет термодинамические явления, исходя из атомистических представлений. Теория постулирует, что тепло является следствием хаотического движения чрезвычайно большого количества микроскопических частиц (атомов и молекул). Теория объясняет, как газовая система реагирует на внешние воздействия. Например, когда газ нагревается от абсолютного нуля, при котором его (классические) частицы абсолютно неподвижны, скорость частиц возрастает с ростом его температуры. Это приводит к большему числу их столкновений со стенками сосуда в единицу времени за счёт более высокой скорости. По мере роста числа столкновений возрастает их воздействие на стенки сосуда, пропорционально которому возрастает давление.

Успешное объяснение газовых законов, исходя из положений кинетической теории, стало одним из факторов подтверждения атомарного строения веществ в природе. В современной физике молекулярно-кинетическая теория рассматривается как составная часть статистической механики.

Электрический ток в газах[править | править код]

Газы — очень плохие проводники, но в ионизированном состоянии газ способен проводить электрический ток[6]. Проводимость газа зависит от напряжения нелинейно, поскольку степень ионизации изменяется по сложному закону. Основных способов ионизации газа два: термическая ионизация и ионизация электрическим разрядом. Кроме того, существует так называемый самостоятельный электрический разряд (пример — молния).

Термическая ионизация — придание атомам достаточной кинетической энергии для отрыва электрона от ядра и последующей ионизации вследствие повышения температуры газа и тепловое движение атомов газа, приводящее к столкновениям и превращением их в кинетическую энергию. Температуры, необходимые для ионизации газов, очень высоки (например, для водорода этот показатель составляет 6000 К). Этот тип ионизации газов распространён преимущественно в природе.

При низкой температуре газ также может проводить ток, если мощность его внутреннего электрического поля превышает некоторое пороговое значение. Пороговое значение в этом случае — достижение электроном под действием электрического поля достаточной кинетической энергии, необходимой для ионизации атома. Далее электроны снова разгоняются электрическим полем для ионизации и ионизируют два атома и т. д. — процесс становится цепным. В конечном итоге все свободные электроны достигнут позитивного электрода, позитивные ионы — негативного электрода. Данный тип ионизации распространён преимущественно в промышленности.

При нагревании катода электрическим разрядом с большой силой тока происходит его нагрев до степени термоэлектронной эмиссии электронов из него (дуговой разряд).

Процессы переноса[править | править код]

Для газа характерен высокий коэффициент самодиффузии.

Газы имеют невысокую теплопроводность, поскольку передача энергии от молекулы к молекуле происходит за счет редких столкновений. Этим объясняются хорошие теплоизоляционные свойства шерсти и ваты, материалов, в которых большинство объёма заполнено воздухом. Но в газах действует другой механизм передачи тепла — конвекция.

Сжимаемость[править | править код]

Сжимаемость (z) — это отношение удельного объёма газа к удельному объёму идеального газа с такой же молярной массой. Как правило, это число чуть меньше единицы, при этом наиболее значительно отклоняется от неё вблизи линии насыщения и для достаточно сложных органических газов, например, для метана при стандартных условиях z=0,9981{\displaystyle z=0,9981}[7].

Рассчитать коэффициент сжимаемости можно несколькими способами:

  • модифицированным методом NX19 мод;
  • модифицированным уравнением состояния GERG-91 мод;
  • уравнением состояния AGA8-92DC;
  • уравнением состояния ВНИЦ СМВ.

Теплоёмкость[править | править код]

Теплоёмкость газа сильно зависит от характера процесса, который с ним протекает. Наиболее часто используются изобарная теплоёмкость cp{\displaystyle c_{p}} и изохорная cv{\displaystyle c_{v}}; для идеального газа cp=cv+R{\displaystyle c_{p}=c_{v}+R}.

Теплопроводность[править | править код]

Теплопроводность газов — явление направленного переноса тепловой энергии за счёт столкновения частиц газа без переноса вещества.

Вязкость[править | править код]

В отличие от жидкостей, кинематическая вязкость газов с ростом температуры растёт, хотя для динамической вязкости зависимость менее выражена. Также вязкость растёт с давлением.

Число Прандтля[править | править код]

Число Прандтля (отношение кинематической вязкости к температуропроводности) Pr=νa=μcpλ{\displaystyle \mathrm {Pr} ={\nu \over a}={\mu c_{p} \over \lambda }} для газов обычно немного меньше единицы.

Под уравнением состояния (для газов) подразумевают математическую модель, которая используется для приближённого описания или моделирования свойств газа. В настоящее время не существует единого уравнения состояния, которое бы точно прогнозировало свойства всех газов при любых условиях. Поэтому было разработано большое число точных уравнений состояния для конкретных газов в диапазоне определённых температур и давлений. Математические модели газа, наиболее часто используемые — это модели «идеального газа» и «реального газа».

Идеальный газ[править | править код]

Идеальный газ — это газ, в котором молекулы можно считать материальными точками, а силами притяжения и отталкивания между молекулами можно пренебречь. В природе такого газа не существует, но близкими по свойствам к идеальному газу являются реальные разреженные газы при давлениях, не превышающих 200 атмосфер, и не очень низких температурах, поскольку при таких условиях расстояние между молекулами намного превышает их размеры. С точки зрения феноменологической термодинамики идеальным газом (по определению) называется гипотетический, не существующий в природе, газ, в точности подчиняющийся уравнению газового состояния Клапейрона — Менделеева: PV=νRT{\displaystyle PV=\nu \,RT}

Различают три типа идеального газа:

  1. Классический идеальный газ или газ Максвелла — Больцмана.
  2. Идеальный квантовый газ Бозе (состоит из бозонов).
  3. Идеальный квантовый газ Ферми (состоит из фермионов).

Внутренняя энергия идеального газа описывается следующим уравнением:

U=c^VnRT=c^VNkT,{\displaystyle U={\hat {c}}_{V}nRT={\hat {c}}_{V}NkT,}

где

c^V{\displaystyle {\hat {c}}_{V}} является константой (равной, например, 3/2 для одноатомного газа),
U{\displaystyle U} — внутренняя энергия (Дж),
P{\displaystyle P} — давление (Па),
V{\displaystyle V} — объём (м3),
n{\displaystyle n} — количество вещества (моль),
R{\displaystyle R} — универсальная газовая постоянная (Дж/(моль·К)),
T{\displaystyle T} — абсолютная температура (К),
N{\displaystyle N} — количество молекул,
k{\displaystyle k} — постоянная Больцмана (Дж/К).

Реальный газ[править | править код]

Реальный газ — это газ, между молекулами которого действуют силы межмолекулярного взаимодействия.

Опыт показал, что законы идеальных газов с высокой степенью точности справедливы для реальных газов лишь при температурах, превышающих критическую. При повышении давления и понижении температуры ниже критической обнаруживаются значительные отклонения в поведении всех реальных газов. Реальный газ имеет сжимаемость от внешних сил значительно меньшую, чем идеальный. Реальные газы конденсируются, а уравнение состояния идеального газа не может объяснить переход вещества из газообразного состояния в жидкое[8].

Силы межмолекулярного взаимодействия — короткодействующие, то есть проявляются на расстояниях R ≤ 10−9 м и быстро уменьшаются с увеличением расстояния.

Силы межмолекулярного взаимодействия в зависимости от расстояния между молекулами могут быть силами притяжения или силами отталкивания. Молекулярные силы притяжения называют силами Ван-дер-Ваальса. Из рисунка видно, что для больших расстояний между молекулами, когда плотность газа мала, силы Ван-дер-Ваальса правильно передают характер взаимодействия между молекулами. Части кривой, соответствующей межмолекулярному отталкиванию, в модели Ван-дер-Ваальса соответствует положительная часть кривой. На этом участке U (r) → ∞ при r ≤ d, то есть центры молекул не могут приблизиться на расстояние r < d (d — диаметр молекулы). В общем, изображена пунктиром кривая представляет потенциальную энергию парного взаимодействия молекул, между которыми действуют силы притяжения, а силы отталкивания проявляются лишь в случае столкновения согласно модели твердых шариков.

В 1873 году Ван-дер-Ваальс, проанализировав причины отклонения свойств реальных газов от закона Бойля-Мариотта, вывел уравнение состояния реального газа, в котором были учтены собственный объём молекул и силы взаимодействия между ними. Аналитическое выражение уравнение Ван-дер-Ваальса для одного моля газа имеет вид:

(p+aVμ2)(Vμ−b)=RT{\displaystyle \left(p+{\frac {a}{V_{\mu }^{2}}}\right)\left(V_{\mu }-b\right)=RT},

где коэффициенты a{\displaystyle a} и b{\displaystyle b} называют постоянными Ван дер Ваальса, которые зависят от химической природы вещества, температуры и давления.

Уравнение Ван дер Ваальса для произвольного количества газа массой m{\displaystyle m} имеет вид:

(p+m2μ2aV2)(V−mμb)=mμRT{\displaystyle \left(p+{\frac {m^{2}}{\mu ^{2}}}{\frac {a}{V^{2}}}\right)\left(V-{\frac {m}{\mu }}b\right)={\frac {m}{\mu }}RT}

Уравнение Ван-дер-Ваальса является приближенным уравнением состояния реального газа, причем степень его приближения различна для разных газов. Записано большое количество эмпирических и полуэмпирических уравнений состояния реальных газов (уравнение: Бертло, Клаузиуса — Клапейрона, Дитеричи, Редлиха — Квонг, Камерлинг-Оннес т. п.). За счет увеличения числа констант в этих уравнениях можно достичь лучшего согласования с практикой, по сравнению с уравнением Ван-дер-Ваальса. Однако уравнение Ван-дер-Ваальса, благодаря своей простоте и физическому содержанию постоянных a{\displaystyle a} и b{\displaystyle b} входящих в него, является самым распространённым для анализа качественной поведения реальных газов.

  1. ↑ Физическая Энциклопедия т. 1, 1988, с. 375.
  2. ↑ Белоконь Н. И., Основные принципы термодинамики, 1968, с. 78.
  3. ↑ Кириллин В. А. , Техническая термодинамика, 1983, с. 165.
  4. ↑ Перельман Я. И. ,Занимательная  физика, 1994, с. 109.
  5. ↑ Физическая Энциклопедия т. 1, 1988, с. 123.
  6. ↑ Элементарный учебник ;физики / Под ред. Ландсберг Г. С.. — Изд. 8-е. — М.: Наука, 1972. — Т. 2. — С. 230—268.
  7. ↑ ГОСТ 30319.1-96. Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки.
  8. ↑ Вукалович М. П., Техническая термодинамика, 1968, с. 190—192.
  • Физическая Энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1988. — Т. 1. — 704 с.
  • Белоконь Н. И. Основные принципы термодинамики. — М.: Недра, 1968. — 112 с.
  • Вукалович М. П. Техническая термодинамика. — М.: Энергия, 1968. — 496 с.
  • Перельман Я. И. Занимательная физика. — Чебоксары: ТОО Арта, 1994. — Т. 2. — 272 с..
  • Кириллин В. А. Техническая термодинамика. — 4-е. — М.: Энергоатомиздат, 1983. — 416 с.

ru.wikipedia.org

Основные виды газов

Природе известно три основных состояния любого вещества: твердое, жидкое и газообразное. Практически любая жидкость может обрести каждое из оставшихся двух. Многие твердые тела при плавлении, испарении или сгорании могут пополнить содержимое воздуха. Но не каждый газ может стать компонентом твердых материалов или жидкостей. Известны разные виды газов, которые отличаются между собой по свойствам, происхождению и особенностям применения.

Определение и свойства

Газ – это вещество, для которого характерно отсутствие или минимальное значение межмолекулярных связей, а также активная подвижность частиц. Основные свойства, которые имеют все виды газов:

  1. Текучесть, деформируемость, летучесть, стремление к максимальному объему, реакция атомов и молекул на понижение или повышение температуры, которая проявляется изменением интенсивности их движения.
  2. Существуют при температуре, в условиях которой повышение давления не приводит к переходу в жидкое состояние.
  3. Легко сжимаются, уменьшаясь в объеме. Это упрощает транспортировку и использование.
  4. Большинство сжижается путем сжатия в определенных границах давлений и критических значений теплоты.

В силу исследовательской труднодоступности описываются с помощью таких основных параметров: температура, давление, объем, молярная масса.

Классификация по месторождению

В природной среде все виды газов находятся в воздухе, земле и в воде.

  1. Составные воздуха: кислород, азот, углекислый газ, аргон, окись азота с примесями неона, криптона, водорода, метана.
  2. В земной коре азот, водород, метан и другие углеводороды, углекислый газ, оксид серыи прочие находятся в газообразном и жидком состоянии. Также существуют газовые залежи в твердой фракции в смеси с пластами воды при давлениях около 250 атм. при относительно низких температурах (до 20˚С).
  3. Водоемы содержат растворимые газы – хлороводород, аммиак и плохо растворимые – кислород, азот, водород, диоксид углеродаи др.

Природные запасы намного превышают возможное количество искусственно созданных.

Классификация по степени горючести

Все виды газов, в зависимости от поведенческих характеристик в процессах возгорания и горения, делятся на окислители, инертные и горючие.

  1. Окислители способствуют возгоранию и поддерживают горение, но сами не горят: воздух, кислород, фтор, хлор, окись и двуокись азота.
  2. Инертные не участвуют в горении, однако имеют свойство вытеснять кислород и влиять на снижение интенсивности процесса: гелий, неон, ксенон, азот, аргон, углекислый газ.
  3. Горючие загораются или взрываются, соединяясь с кислородом: метан, аммиак, водород, ацетилен, пропан, бутан, угарный газ, этан, этилен. Большинство из них характеризуется горением только в условиях определенного состава газовой смеси. Благодаря этому свойству, газ – вид топлива, на сегодняшний день самый распространенный. В этом качестве используются метан, пропан, бутан.

Углекислый газ и его роль

Является одним из наиболее распространенных газов в атмосфере (0,04 %). При нормальной температуре и атмосферном давлении имеет плотность 1,98 кг/м3. Может находится в твердом и жидком состоянии. Твердая фаза наступает при отрицательных показателях тепла и постоянном атмосферном давлении, она именуется «сухой лед». Жидкая фаза СО2 возможна при повышении давления. Это свойство используется для хранения, транспортировки и технологического применения. Сублимация (переход в газообразное состояние из твердого, без промежуточной жидкой фазы) возможна при -77 – -79˚С. Растворимость в воде в соотношении 1:1 реализуется при t=14-16˚С.

Виды углекислого газа различают в зависимости от происхождения:

  1. Продукты жизнедеятельности растений и животных, выбросы вулканов, газовые выделения из недр земли, испарения с поверхности водоемов.
  2. Результаты деятельности человека, в том числе выбросы в результате сгорания всех видов топлива.

Как полезное вещество, применяется:

  1. В углекислотных огнетушителях.
  2. В баллонах для дуговой сварки в соответствующей среде СО2.
  3. В пищевой промышленности как консервант и для газирования воды.
  4. Как хладагент для временного охлаждения.
  5. В химической промышленности.
  6. В металлургии.

Будучи незаменимой составляющей жизни планеты, человека, работы машин и целых заводов, диоксид углерода накапливается в нижних и верхних слоях атмосферы, задерживая выход тепла и создавая «парниковый эффект».

Среди веществ природного происхождения и технологического назначения выделяют такие, которые имеют высокую степень горючести и теплотворности. Для хранения, транспортировки и применения используются следующие виды сжиженного газа: метан, пропан, бутан, а также пропан-бутановые смеси.

Бутан (С4Н10) и пропан являются компонентами нефтяных газов. Первый сжижается при -1 – -0,5˚С. Транспортировка и применение в морозную погоду чистого бутана не осуществляется по причине его замерзания. Температура сжижения для пропана (С3Н8) -41 – -42˚С, критическое давление – 4,27 МПа.

Метан (СН4) – основная составляющая природного газа. Виды источника газа – залежи нефти, продукты биогенных процессов. Сжижение происходит с помощью поэтапного сжатия и снижения теплоты до -160 – -161˚С. На каждом этапе сжимается в 5-10 раз.

Сжижение осуществляется на специальных заводах. Выпускаются пропан, бутан, а также их смесь для бытового и промышленного использования по отдельности. Метан применяется в промышленности и в виде топлива для транспорта. Последний также может выпускаться и в сжатом виде.

Сжатый газ и его роль

В последнее время популярность приобрел сжатый природный газ. Если для пропана и бутана применяется исключительно сжижение, то метан может выпускаться как в сжиженном, так и в сжатом состоянии. Газ в баллонах под высоким давлением в 20 МПа имеет ряд преимуществ перед общеизвестным сжиженным.

  1. Высокая скорость испарения, в том числе при отрицательных температурах воздуха, отсутствие негативных явлений накопления.
  2. Более низкий уровень токсичности.
  3. Полное сгорание, высокий КПД, отсутствие негативного влияния на оборудование и атмосферу.

Все чаще находит применение не только для грузовых, но и для легковых автомобилей, а также для котельного оборудования.

Газ – малозаметное, но незаменимое вещество для жизнедеятельности человека. Высокая теплотворная способность некоторых из них оправдывает широкое использование различных компонентов природного газа в качестве топлива для промышленности и транспорта.

fb.ru

Природный газ, свойства, химический состав, добыча и применение

Природный газ, свойства, химический состав, компоненты и составляющие, добыча и применение.

 

 

Природный газ – это газообразная смесь, состоящая из метана и более тяжелых углеводородов, азота, диоксида углерода, водяных паров, серосодержащих соединений, инертных газов.

 

Природный газ

Происхождение природного газа

Химический состав природного газа, требования ГОСТ

Виды природного газа. Сухой, бедный, тощий, жирный и сырой газы

Компоненты и составляющие природного газа

Физические свойства природного газа

Добыча природного газа

Применение и использование природного газа

Другие виды топлива: биодизель, биотопливо, газойль, горючие сланцы, лигроин, мазут, нефть, попутный нефтяной газ, природный газ, свалочный газ, сланцевая нефть, сланцевый газ, синтез-газ

 

Природный газ:

Природный газ – это полезное ископаемое, смесь газов, образовавшихся в недрах Земли при анаэробном разложении органических веществ.

Природный газ существует в газообразном, твердом или растворённом состоянии. В первом случае – в газообразном состоянии – он широко распространен и содержится в пластах горных пород в недрах Земли в виде газовых залежей (отдельных скоплений, заключенных в «ловушке» между осадочными породами), а также в нефтяных месторождениях в виде газовых шапок. В растворённом состоянии он содержится в нефти и воде. В твердом состоянии он встречается в виде газовых гидратов (т.н. «горючий лёд») – кристаллических соединений природного газа и воды переменного состава. Газовые гидраты – перспективный источник топлива.

При нормальных условиях (1 атм. и 0 °C) природный газ находится только в газообразном состоянии.

Является самым чистым видом органического топлива. Но для того, чтобы использовать его в качестве топлива из него выделяют его составляющие для отдельного использования.

Природный газ представляет собой легковоспламеняющуюся смесь различных углеводородов и примесей.

Природный газ – это газообразная смесь, состоящая из метана и более тяжелых углеводородов, азота, диоксида углерода, водяных паров, серосодержащих соединений, инертных газов.

Природным он зовется, потому что не является синтетическим. Газ рождается под землей в толще осадочных пород из продуктов разложения органики.

Природный газ распространен в природе гораздо шире, чем нефть.

Не имеет ни цвета, ни запаха. Легче воздуха в 1,8 раза. Горюч и взрывоопасен. При утечке не собирается в низинах, а поднимается вверх.

Характерный запах газа, используемого в быту, обусловлен одорацией – добавлением в его состав одорантов, то есть неприятно пахнущих веществ. Самый распространенный одорант – этантиол, его можно почувствовать в воздухе при концентрации 1 на 50 000 000 частей воздуха. Именно благодаря одорации можно легко устанавливать утечки газа.

 

Происхождение природного газа:

Существует две теории происхождения природного газа: биогенная (органическая) теория и абиогенная (неорганическая, минеральная) теория.

Впервые биогенную теорию происхождения природного газа в 1759 году высказал М.В. Ломоносов. В далеком геологическом прошлом Земли погибшие живые организмы (растения и животные) опускались на дно водоемов, образуя илистые осадки. В результате различных химических процессов они разлагались в безвоздушном пространстве. Из-за движения земной коры эти остатки опускались все глубже и глубже, где под действием высокой температуры и высокого давления превращались в углеводороды: природный газ и нефть. Низкомолекулярные углеводороды (т.е. собственно природный газ) образовывался при более высоких температурах и давлениях. Высокомолекулярные углеводороды – нефть – при меньших. Углеводороды, проникая в пустоты земной коры, образовывали залежи месторождений нефти и газа. Со временем эти органические отложения и залежи углеводородов уходили глубоко вниз на глубину от одного километра до нескольких километров  – их покрывали слои осадочных пород либо под действием геологических движений земной коры.

Минеральную теорию происхождения природного газа и нефти сформулировал в 1877 году Д.И. Менделеев. Он исходил из того, что углеводороды могут образовываться в недрах земли в условиях высоких температур и давлений в результате взаимодействия перегретого пара и расплавленных карбидов тяжелых металлов (в первую очередь железа). В результате химических реакций образуются окислы железа и других металлов, а также  различные углеводороды в газообразном состоянии. При этом вода попадает глубоко в недра Земли по трещинам-разломам в земной коре. Образовавшиеся углеводороды, находясь в газообразном состоянии, в свою очередь по тем же трещинам и разломам поднимаются наверх в зону наименьшего давления, образуя в конечном итоге газовые и нефтяные залежи. Данный процесс, по мнению Д.И. Менделеева и сторонников гипотезы, происходит постоянно. Поэтому, уменьшение запасов углеводородов в виде нефти и газа человечеству не грозит.

 

Химический состав природного газа:

Химический состав добываемого природного газа различается в зависимости от месторождения. В любом случае основным и ценным компонентом является метан (СН4), содержание которого составляет от 70 до 98 %.

В состав добываемого газа входят как углеводородные компоненты (метан СН4 и его гомологи: этан С2Н6, пропан С3Н8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан С7Н16, октан С8Н18, нонан С9Н20, декан С10Н22 и т.д. вплоть до доказана С22Н46), так и неуглеводородные компоненты (Ar, H2, He, N2, H2S, водяные пары – H2O, CO, CO2 и пр. серосодержащие соединения и инертные газы). Природный газ также содержит следовые количества других компонентов.

Углеводороды, начиная с этана, считаются тяжёлыми. Они образуются только в процессе образования нефти и также называются специфическими «нефтяными» газами. Они  являются обязательным спутником нефтей. Их наличие в отобранных пробах свидетельствует о залежах нефти.

 

Виды природного газа. Сухой, бедный, тощий, жирный и сырой газы: 

Качество газа как топлива, как энергоносителя зависит от содержания в нем метана. По содержанию в добываемом газе метана и тяжёлых углеводородов различают сухие (бедные, тощие) и жирные (сырые, богатые) газы.

Сухой, бедный или тощий газ – это природный горючий газ из группы углеводородных, характеризующийся резким преобладанием в его составе метана, сравнительно невысоким содержанием этана и низким – остальных тяжелых углеводородов. Он более характерен для чисто газовых залежей.

Жирный или сырой газ – природный горючий газ из группы углеводородных, характеризующийся повышенным содержанием (свыше 15 %) тяжелых углеводородов, начиная от пропана C3H8 и выше. Такой состав газов характерен для газоконденсатных и нефтяных месторождений.

В качестве примера для наглядности ниже в таблице приведен состав сухого и сырого газа.

Состав Сухой газ*, % объема Сырой газ*, % объема
Метан 86,3 36,8
Этан 9,6 32,6
Пропан 3,0 21,1
Бутан 1,1 5,8
Пентан 3,7

* В таблице приведен один из примеров. Реальный состав газов в добываемом природном газе из конкретного месторождения может существенно отличаться от приведенного примера.

Поэтому для углеводородного состава газов применяется понятие «коэффициент сухости», которое представляет собой отношение процентного содержания метана СН4 к сумме его гомологов (этану С2Н6 и выше).

 

Требования ГОСТ к химическому составу природного газа: 

ГОСТом 30319.1-2015 «Газ природный. Методы расчета физических свойств. Общие положения» установлены следующие требования к химическому составу природного газа, транспортируемого по газотранспортным системам:

Компоненты природного газа Диапазоны молярных долей компонентов
Метан 0,7≤ ХСН4<1,0
Этан ХС2Н6≤0,10
Пропан ХС3Н8≤0,035
Бутаны в сумме ХС4Н10≤0,015
Пентаны в сумме ХС5Н12≤0,005
Гексан ХС6Н14≤0,001
Азот ХN2≤0,20
Диоксид углерода ХCO2≤0,20
Остальные компоненты Молярные доли не должны превышать суммарно 0,0025

 

Компоненты и составляющие природного газа:

Метан (CH4) – это бесцветный газ без запаха. Легче воздуха. Горюч и взрывоопасен. Представляет опасность для здоровья человека.

Этан (C2H6) – бесцветный газ, без запаха и вкуса. Тяжелее воздуха. Горюч и взрывоопасен. Не используется как топливо. Малотоксичен. Представляет опасность для здоровья человека.

Пропан (C3H8) – бесцветный газ, без запаха. Ядовит. В отличие от метана сжижается при комнатной температуре и сравнительно невысоком давлении (12-15 атм), что позволяет его легко хранить и транспортировать.

Бутан (C4H10) – бесцветный газ, со специфическим запахом. Ядовит. Вдвое тяжелее воздуха.

Пентан5Н12) имеет три изомера (нормальный пентан, изопентан и неопентан).  Нормальный пентан и изопентан – легколетучие подвижные жидкости с характерным запахом. Неопентан – бесцветный газ с характерным запахом. Горюч и взрывоопасен. Токсичен.

Гексан6Н14) – бесцветная жидкость со слабым запахом, напоминающим дихлорэтан. Горюч и взрывоопасен. Токсичен.

Азот (N2) – бесцветный газ, без запаха и вкуса. Весьма инертен. Является основным компонентом воздуха – 78,09 % объёма.

Аргон (Ar) – газ без цвета, вкуса и запаха. Инертен. В 1,3 раза тяжелее воздуха. Не горит. Представляет опасность для здоровья человека.

Водород (H2) – лёгкий бесцветный газ, без вкуса и запаха. В смеси с воздухом или кислородом горюч и взрывоопасен. Легче воздуха.

Гелий (He) – очень лёгкий газ без цвета, вкуса и запаха. Легче воздуха. Инертен, при нормальных условиях не реагирует ни с одним из веществ. Не горит. Представляет опасность для здоровья человека.

Сероводород (H2S) – бесцветный газ со сладковатым вкусом, с характерным неприятным запахом (тухлых яиц, тухлого мяса). Ядовит. Горюч и взрывоопасен. Тяжелее воздуха.

Углекислый газ (CO2) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом). Не горит. Тяжелее воздуха в 1,5 раза. Представляет опасность для здоровья человека.

 

Физические свойства природного газа:

Наименование параметра: Значение:
Внешние признаки без цвета, запаха и вкуса
Плотность, кг/м3:
Сухой газообразный от 0,68 до 0,85
Жидкий 400
Температура самовозгорания, °C 650
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 4,4 до 17
Удельная теплота сгорания, МДж/м³ 28-46
Удельная теплота сгорания, Мкал/м³ 6,7-11
Удельная теплота сгорания, кВт·ч/м³ 8-12
Октановое число при использовании в двигателях внутреннего сгорания 120-130
Легче воздуха в 1,8 раза. При утечке не собирается в низинах, а поднимается вверх.

 

Добыча природного газа:

Залежи природного газа находятся глубоко в земле, на глубине от одного до нескольких километров. Поэтому, чтобы добыть его необходимо пробурить скважину. Самая глубокая скважина имеет глубину более 6 километров.

В недрах Земли газ находится микроскопических пустотах  – порах, которыми обладают некоторые горные породы. Поры соединены между собой микроскопическими каналами – трещинами. В порах и трещинах газ находится под высоким давлением, которое намного превышает атмосферное. Природный газ движется в порах и трещинах, поступая из пор с высоким давлением в поры с более низким давлением.

При бурении скважины газ вследствие действия физических законов полностью поступает в скважину, стремясь в зону низкого давления. Таким образом, разность давления в месторождении и на поверхности Земли является естественной движущей силой, которая выталкивает газ из недр.

Газ добывают из недр земли с помощью не одной, а нескольких и более скважин. Скважины стараются разместить равномерно по всей территории месторождения для равномерного падения пластового давления в залежи. Иначе возможны перетоки газа между областями месторождения, а также преждевременное обводнение залежи.

Так как добытый газ содержит множество примесей, то его сразу же после добычи очищают на специальном оборудовании, после чего транспортируют потребителю.

 

Применение и использование природного газа: 

Природный газ применяется и используется как топливо, а также как сырье в химической промышленности для получения различных органических вещества, например, пластмасс.

 

Другие виды топлива:

– биодизель,

– биотопливо,

– газойль,

– горючие сланцы,

– лигроин,

– мазут,

– нефть,

– попутный нефтяной газ,

– природный газ,

– свалочный газ,

– сланцевая нефть,

– сланцевый газ,

– синтез-газ.

 

Примечание: © Фото //www.pexels.com, //pixabay.com

 

карта сайта

какой сжиженный природный газ метан вода дома является 4 класс воздух для населения купить содержит формула природный источник тема окружающий мир презентация
сколько сгорание получение компоненты вещества применение составляющие использование масса места теплота давление стоимость м3 температура свойства виды переработка куб сжигание месторождения какой объем плотность добыча расход состав места добычи цена природного газа
цена давление сколько м3 стоимость свойства добыча сгорание использование расход куб запасы производство плотность температура углеводород теплота сгорания объем установки расчет качество сжигание месторождения формула природного газа
газ природный 14 2 2 12018 5
плита под нефть россия гост тариф на сколько стоит компримированный природный газ является какое дома для населения купить страны уголь метан воздух вода перевод газпром баллон значение мира оборудование вещество
газопроводы переработка кг сжижение сеть сигнализаторы какое давление потребление компонент горение виды жиклеры для применение сигнализатор загазованности транспортировка составляющие химические свойства количество поставка характеристика учет природного газа
генератор котлы на природном газе
отопление природным газом

 

Коэффициент востребованности 11 603

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Виды горючих газов и их свойства


Горючими называют газы, которые способны поддерживать горение. В большинстве случаев они также являются и взрывоопасными, то есть, при большой концентрации могут привести к взрыву. Большинство горючих газов являются природными, но существуют и получаемые искусственным путем, в процессе определенных технологических процессов.

Метан

Этот главный компонент природного газа отлично горит, благодаря чему широко применяется в различных областях деятельности человека. С его помощью работают котельные, бытовые газовые плиты, двигатели автомобилей и другие механизмы. Особенностью метана является его легковесность. Он легче воздуха, поэтому при утечке поднимается вверх, а не скапливается в низинах, как многие другие газы.

Метан не имеет запаха и цвета, поэтому его утечку обнаружить крайне трудно. Учитывая взрывоопасность, поставляемый потребителям газ обогащен ароматическими добавками. В качестве них используют резко пахнущие вещества, вводимые в очень малом количестве и придающие метану слабый, но однозначно узнаваемый ароматический оттенок.

Пропан

Это второй по распространенности горючий газ, также входящий в состав природного газа. Наряду с метаном он широко применяется в промышленности. Пропан не имеет запаха, поэтому в большинстве случаев содержит специальные ароматические добавки. Легко воспламеняется и может скапливаться в концентрациях, угрожающих взрывом.

Бутан

Данный газ из состава природного также является горючим. В отличие от первых двух веществ, он обладает специфическим запахом и не нуждается в дополнительной ароматизации. Бутан оказывает вредное влияние на здоровье человека. В частности, он угнетает нервную систему, а при повышении вдыхаемого объема приводит к дисфункции легких.

Коксовый газ

Этот газ получают при нагреве каменного угля до температуры 1 000 градусов без доступа воздуха. Он обладает весьма широким составом, из которого можно выделить множество полезных веществ. После очистки коксовый газ может быть использован для нужд промышленности. В частности его применяют в качестве топлива для отдельных блоков той же печи, где нагревают уголь.

Сланцевый газ

Фактически это метан, но добываемый несколько иным путем. Сланцевый газ выделяется при обработке горючих сланцев. Они представляют собой полезное ископаемое, которое при нагреве до очень высокой температуры выделяет смолу, по составу похожую на нефть. Побочным продуктом является сланцевый газ.

Нефтяной газ

Данный вид газа изначально растворен в нефти и представляет собой разрозненные химические элементы. Во время добычи и обработки, нефть подвергают различным воздействиям (крекинг, гидроочистка и т.д.), в результате чего из нее начинает выделяться газ. Этот процесс происходит непосредственно на нефтяных вышках, а классическим способом его удаления является сжигание. Те, кто хоть раз видел работающую нефтяную вышку-качалку, наверняка замечал горящий рядом огненный факел.

Сейчас все чаще нефтяной газ используют в производственных целях, например, закачивают в подземные пласты для увеличения внутреннего давления и упрощения подъема нефти из скважины.

Нефтяной газ хорошо горит, поэтому его можно поставлять на предприятия или смешивать с природным газом.

Доменный газ

Выделяется при выплавке чугуна в специальных промышленных печах – домнах. При использовании улавливающих систем, доменный газ можно накапливать и использовать в дальнейшем как топливо для той же печи или другого оборудования.

ecoportal.info

Применение природного газа. Природный газ: состав, свойства

Что мы знаем об углеводородах? Ну разве что что-то из школьной программы по химии, да периодически мелькающее в СМИ слово "метан"… Что мы знаем о природном газе, кроме его взрывоопасных свойств? Каково еще применение природного газа, кроме общеизвестных нам приготовления пищи и отопления жилых построек? Что нового происходит в мире энергопотребления и энергетической безопасности?

Основные свойства

Начнем с того, что известная фраза по поводу запаха газа в квартире или на улице не совсем правильна. У природного газа, который подается нам в квартиры для приготовления пищи или для подогрева воды, нет ни вкуса, ни запаха. То, что мы ощущаем, есть не что иное, как специальная добавка, необходимая для определения утечек газа. Это так называемый одорант, добавляют его на специально оборудованных станциях в следующих пропорциях: 16 мг на одну тысячу кубометров газа.

Основным компонентом природного газа, безусловно, является метан. Его содержание в газовой смеси составляет порядка 89-95%, остальные компоненты - это бутан, пропан, сероводород и так называемые примеси - пыль и негорючие компоненты, кислород и азот. Процент содержания метана зависит от типа месторождения.

Энергия природного газа, выделяемая при сгорании одного кубометра топлива, называется теплотой сгорания. Данная величина является одной из начальных во всех вопросах проектирования газовых объектов, и в разных странах за основу берутся различные значения. В России расчет ведется по низшей теплоте сгорания, в странах Запада, таких как Франция и Великобритания, - по высшей.

Говоря о взрывоопасности природного газа, стоит упомянуть о таких понятиях, как пределы взрываемости и опасная концентрация. Газ взрывается при концентрации его в помещении от 5 до 15 % от объема. Если концентрация ниже, газ не горит, если концентрация более 15%, то газовоздушная смесь горит при дополнительной подаче воздуха. Опасной концентрацией принято называть 1/5 от нижнего предела взрываемости, то есть 1%.

Основы виды и применение природного газа

Бутан и пропан нашли свое применение как топливо для автомобилей (сжиженный газ). Также пропан используется для заправки зажигалок. Этан в качестве топлива применяется крайне редко, поскольку является сырьем для производства полиэтилена. Ацетилен крайне горюч и используется при сварке и резке металлов. Применение природного газа, а если быть точнее - метана, нами уже обговаривалось, он используется как горючее топливо в плитах, колонках и котлах.

Разновидности добываемого природного газа

По типам добываемого газа месторождения делятся на газовые или попутные. Основное различие между ними заключается в проценте содержания углеводородов. В газовых месторождениях содержание метана составляет около 80-90%, в попутных, или, как их принято еще называть, «нефтяных», содержание его не более 50%. Остальные 50% - это пропан-бутан и отделившаяся от газа нефть. Одним из самых больших минусов газа из попутного месторождения является обязательная его очистка от различных примесей. Получение природного газа бывает также связано с добычей гелия. Подобные месторождения встречаются достаточно редко, гелий считается оптимальным газом для охлаждения ядерных реакторов. Сера, выделяемая из сероводородов, добытых как примесь природного газа, также используется в промышленных целях.

Основным инструментом при добыче природного газа является буровая установка. Это четырехногая вышка высотой около 20-30 метров. К ней подвешивается труба с буром на конце. Труба эта увеличивается по мере увеличения глубины скважины, в процессе бурения в скважину добавляется специальная жидкость, чтобы разрушаемые породы ее не забили.

Осуществляется подача данной жидкости с помощью специальных насосов. Разумеется, стоимость природного газа включает в себя затраты на эксплуатацию и сооружение газодобывающих скважин. От 40 до 60% себестоимости составляют затраты именно на это.

Как к нам приходит газ?

Итак, покинув место добычи, очищенный природный газ поступает на первую компрессорную станцию, или, как ее еще называют, головную. Расположена она чаще всего в непосредственной близости от месторождения. Там с помощью установок газ с высоким давлением поступает в магистральные газопроводы. Для поддержания заданного давления на магистральных газопроводах устанавливаются дожимные компрессорные станции. Поскольку прокладка труб с данной категорией давления внутри городов запрещена, перед каждым крупным городом устанавливается ответвление. Оно уже, в свою очередь, не повышает, а понижает давление. Часть его расходуется крупными потребителями газа - промышленными предприятиями, заводами, котельными. А другая часть поступает в так называемые ГРП - газораспределительные пункты. Там давление еще раз понижается. Где применение природного газа нам с вами наиболее знакомо и понятно? Это конфорки плит.

Как давно он с нами?

Активное применение природного газа берет свое начало в середине 19 века, после изобретения газовой горелки. Причем изначальное использование его сейчас для нас не совсем привычно. Сначала применялся он для освещения улиц.

В Советском Союзе до конца 30-х годов прошлого века самостоятельной газовой отрасли не существовало. Месторождения газа открывались случайно, лишь при разведке нефтяных скважин. Активное использование природного газа началось с времен Великой Отечественной войны. Нехватка топлива, в связи с потерей части угольных и нефтяных месторождений, дала мощный толчок развитию газовой отрасли. Уже после окончания войны газовая отрасль активно развивалась и постепенно стала одной из самых энергоэффективных.

Альтернативы нет

Пожалуй, лучшим доказательством преимущества природного газа как наиболее удобного источника энергии являются показатели Москвы. Подключение газа позволило ежедневно экономить один миллион кубов дров, 0,65 миллионов тонн угля, 150 тысяч тонн керосина и почти столько же топочного мазута. И все это было заменено 1 млн. куб. м газа. Далее последовала постепенная газификация всей страны и поиск новых месторождений. Позже были найдены огромные запаса газа в Сибири, которые и эксплуатируются по сей день.

Промышленное использование

Использование природного газа не ограничивается только приготовлением пищи - хоть и опосредовано, он применяется для подачи тепла в жилые дома. Большинство крупных городских котельных в Европейской части России используют в качестве основного топлива именно природный газ.

Также все чаще природный газ используют в химической промышленности как сырье для получения различных органических веществ. Все большее количество автомобильных гигантов разрабатывают автомобили на альтернативных видах топлива, в том числе водороде и природном газе.

Только газ тому виной

С точки зрения экологии природный газ можно назвать одним из самых безопасных видов органического топлива. Однако подключение газа во многие сферы жизни человека и последующее сжигание привело к многократному увеличению содержания углекислого газа в атмосфере. Иначе этот процесс носит название "парниковый эффект". И это крайне негативно сказывается на климате нашей планеты. Однако новые технологии и уровень производства в последнее время максимально снижают уровень выбросов в атмосферу. Напомним, газ - один из наиболее безопасных видов топлива.

fb.ru

Каким бывает газ для авто — Honda CR-X, 1.6 л., 1987 года на DRIVE2

Практически все современные двигатели внутреннего сгорания могут работать от двух видов газа — среди доступных в свободной продаже и приемлемых по цене.Первый из них — сжиженный нефтяной газ (СНГ). Он, по сути, является нефтяным продуктом, точно так же как бензин. Но в отличие от бензина это побочный продукт переработки нефти. Благодаря этому его стоимость фактически в два раза ниже по сравнению с бензином. Основным нефтяным газом, продающимся на АЗС, является смесь пропана и бутана, в соотношении 70-75%. Хранится газ в специальных баллонах в сжиженном состоянии под относительно низким давлением -1,2 -1,6 мПа (12-16 атм.).

Метан или пропан: Каким бывает газ для авто

Вторым широко применяемым газом является – метан. Это основная составляющая природного ископаемого газа и так называемого био-газа (извлекается из продуктов жизнедеятельности домашних животных и органических отходов). Именно он является основным топливом для домашних газовых плит, котлов в частных домах и котелен. Хранить метан сложнее. Он не сжижается, и хранить его приходится в специальных толстостенных баллонах из легированной стали под давлением 20 мПа (200 атм.). Современные технологии позволяют изготавливать емкости для его хранения из композитных материалов. Это позволило снизить вес баллонов, но незначительно.

Какая система удобнее — работающая на метане или пропан-бутане? Для того, чтобы это понять, надо сравнить основные плюсы и минусы обеих систем.

Пропан-бутан

Плюсы

Стоимость на 40-55% дешевле бензина

По объему вмещающегося газа баллоны практически не уступают емкостям для бензина

Баллоны могут устанавливаться в нишу для хранения запасного колеса

Пропан-бутановые смеси продаются практически на всех АЗС

Невысокая стоимость установки

Отсутствие потери мощности

Минусы

Расход пропан-бутана выше на 5-10% чем бензина

Особенность: автомобиль прогревается на бензине, при достижении температуры охлаждающей жидкости 40С, питание переключается на газ.

Метан

Плюсы

С учетом возможности добывать био-газ, самое экономически выгодное альтернативное топливо.

До 3-х раз дешевле бензина

Расход ниже, чем у бензина

Минусы

Ограниченное количество заправок

Потеря мощности порядка 10%

Тяжелые и менее емкие баллоны для хранения

Особенность: Измеряется в кубических метрах. 1 куб.м метана = 1,2 л бензина.

Итоги:

Наиболее удобной альтернативой для легковых автомобилей является пропан-бутан. При относительно недорогой стоимости установки позволяет снизить расходы на 40%.

www.drive2.ru

Основные свойства природного газа кратко

Природный газ — газообразные углеводороды, образующиеся в недрах земли. Его относят к полезным ископаемым, а составляющие используются в качестве топлива.

Свойства и состав природного газа


Природный газ горюч и взрывоопасен в соотношении примерно с 10% объемом воздуха. Он легче воздуха в 1,8 раз, бесцветен и не имеет запаха, эти свойства обусловлены высоким содержанием газообразных алканов (СН4 — С4Н10). В составе природного газа преобладает метан (Сh5), он занимает от 70 до 98%, остальной объем заполнен его гомологами, углекислым газом, сероводородом, меркаптанами, ртутью и инертными газами.

Классификация природных газов

Существует всего 3 группы:

  • Первая из них — почти исключающие содержание углеводородов с более чем двумя углеродными соединениями, так называемые сухие газы, получаемые исключительно в месторождениях, предназначенных только для добычи газов.
  • Вторая — газы, добываемые одновременно с первичным сырьем. Это сухой, сжиженный газы и газовый бензин, смешанные между собой.
  • К третьей группе относятся газы, состоящие из сухого газа и значительного объема тяжелых углеводородов, из коих выделяют бензиновые, лигроиновые и керосиновые. К тому же в составе присутствует незначительное количество других веществ. Добываются эти вещества из газоконденсатных месторождений.

Свойства составляющих веществ

Четыре первых члена гомологического ряда при обычных условиях — горючие газы, не обладающие цветом и запахом, взрывоопасны и горючи:

Метан

Первое вещество ряда алканов наиболее устойчиво к температурам. Оно малорастворимо в воде и легче воздуха. Горение метана в воздухе знаменуется появлением голубого пламени. Самый мощный взрыв происходит, при смешивании одного объема метана с десятью объемами воздуха. При других объемных соотношениях тоже происходит взрыв, но меньшей силы. Помимо этого, человеку может быть нанесен непоправимый вред при вдыхании газа высокой концентрации.

Метан может находиться в твердом агрегатном состоянии в виде газовых гидратов.

Применение:

Его используют в качестве промышленного топлива и сырья. Метан применяют для получения ряда важных продуктов — водорода, фреонов, муравьиной кислоты, нитрометана и многих других веществ. С помощью для производства метилхлорида и его гомологичных соединений, метан подвергают хлорированию. При незаконченном сгорании метана получается мелкодисперсный углерод:

Формальдегид появляется посредством протекания реакции окисления, а при реакции с серой — сероуглерод.


Разлом углеродных связей метана под воздействием температур и тока реализует получение ацетилена, используемого в промышленности. Синильная кислота производится посредством окисления метана с аммиаком. Метан — производное водорода в генерации аммиака, а также получения синтез-газа происходит с его участием:

Используемого для связки углеводородов, спиртов, альдегидов и других веществ. Метан активно используют в качестве горючего для транспортных средств.

Этан

Углеводород предельного ряда С2Н6 — это бесцветное вещество в газообразном состоянии, слабо освещающее при горении. Растворяется в спирте в отношении 3:2, как говорится, «подобное в подобном», но почти нерастворим в воде. При температуре свыше 600° С, в отсутствие ускорителя реакции этан разлагается на этилен и водород:

Этан не используют топливной промышленности, основная цель его использования в промышленности — получение этилена.

Пропан

Этот газ плохо растворяется водой и является широко используемым видом топлива. Он производит много тепла при сгорании, практичен в использовании. Пропан — побочный продукт процесса kracking в нефтепромышленности.

Бутан

Имеет малую токсичность,специфический запах, обладает одурманивающими свойствами, вдыхание бутана вызывает асфиксию и сердечную аритмию, негативно влияет на нервную систему. Появляется при крекинге попутного нефтяного газа.

Применение:

Неоспоримыми достоинствами пропана являются низкая стоимость простота транспортировки. Пропан-бутановую смесь используют в качестве топлива в населенных пунктах, где не подведен природный газ, при обработке легкоплавких материалов с небольшой толщиной, вместо ацетилена. Пропан зачастую применим при заготовке сырья и переработке металлолома. В быту сферой необходимости является отопление помещений и приготовление пищи на газовых плитах.

Помимо предельных алканов в состав природного газа входят:

Азот

Азот состоит из двух изотопов 14A и 15A, используется для поддержания давления в скважинах при бурении. Для получения азота сжижают воздух и разделяют его разгонкой, этот элемент составляет 78% состава воздуха. В основном его используют для производства аммиака, из которого получают азотную кислоту, удобрения и взрывчатые вещества.

Диоксид углерода

Соединение, переходящее при атмосферном давлении из твердого (сухой лед) в газообразное состояние. Оно выделяется при дыхании живых существ, также содержится в минеральных источниках и воздухе. Диоксид углерода является пищевой добавкой, используется в баллонах огнетушителей и пневматическом оружии.

Сероводород

Очень токсичный газ — самый активный из серосодержащих соединений, а потому очень опасен для человека прямым воздействием на нервную систему. Бесцветный газ в нормальных условиях, характеризующийся сладковатым вкусом и отвратительным запахом протухших яиц. Хорошо растворим в этаноле, в отличие от воды. Из него получают серу, серную кислоту и сульфиты.

Гелий

Это уникальный продукт, медленно накапливающийся в коре Земли.Его получают методом глубокой заморозки содержащих гелий газов. В газообразном состоянии — инертный газ, не обладающий внешним выражением. Гелий в жидком состоянии, также не имеющая ни запаха, ни цвета, но может поражать живые тканей. Гелий не токсичный, не может взорваться или воспламениться, однако при высоких концентрациях в воздухе вызывает удушье. Его используют при работе с металлами и в качестве наполнителя воздушных шаров и дирижаблей.

Аргон

Благородный негорючий, не ядовитый, не имеющий вкусовых и цветовых качеств. Добывается как эскортный разделению воздуха на кислород и азот газ. Используется для вытеснения воды и кислорода, с целью продлить срок хранения продуктов питания, его также используют при сварке металлов и резке.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Физико-химические свойства природного газа. Добыча и применение природного газа

Газообразное состояние вещества - самое распространенное по сравнению с другими агрегатными параметрами соединений. Ведь в этом состоянии находятся:

  • звезды;
  • межзвездное пространство;
  • планеты;
  • атмосфера;
  • космос в целом.

Главные отличительные свойства газов - это слабые межмолекулярные взаимодействия в кристаллической решетке, из-за которых и проявляются все основные характеристики этих веществ. Газов, безусловно, очень много. Однако мы рассмотрим самый важный и третий по распространенности на нашей планете - природный.

Природный газ: состав

Если характеризовать качественный состав природного газа, то сразу нужно выделить компоненты двух групп: органические и неорганические. Поскольку хоть и принято считать, что он состоит из метана, однако это не совсем так.

К органическим составляющим относятся:

  • метан - СН4;
  • пропан - С3Н8;
  • бутан - С4Н10;
  • этан - С2Н4;
  • более тяжелые углеводороды с количеством атомов углерода больше пяти.

Неорганические компоненты включают в себя следующие соединения:

  • водород (в небольших количествах) - Н2;
  • углекислый газ - СО2;
  • гелий - Не;
  • азот - N2;
  • сероводород - H2S.

Каким именно будет состав той или иной смеси, зависит от источника, то есть месторождения. Этими же причинами объясняются и различные физико-химические свойства природного газа. Однако добывается любой из них, и ценность также имеет каждый. Просто какой-то вид применяется как топливо, а насыщенный посторонними примесями слишком жирно используется в химической отрасли для синтезов соединений.

Физико-химические свойства природного газа

Чтобы указать подобные параметры в точности, следует знать, каков именно состав газовой смеси. Ведь если в ней преобладает в основном метан (до 97%), то характеристики можно приводить, ориентируясь именно на него.

Если же неорганических компонентов или тяжелых углеводородов в избытке (до нескольких процентов), тогда физико-химические свойства природного газа резко меняются.

Поэтому можно указать лишь приблизительные граничные показатели по физическим характеристикам.

  1. Температура самовозгорания - 650-7000С.
  2. Октановое число - 120-130.
  3. Не имеет цвета, вкуса и запаха.
  4. Легче воздуха почти в 2 раза, легко концентрируется в верхних слоях помещения.
  5. Плотность в виде обычного состояния (газа) - 0,68-0,85 кг/м3.
  6. При стандартных условиях всегда находиться в газообразном агрегатном состоянии.
  7. При смешении с воздухом в объемах от 5-15 % является взрывоопасным.
  8. Теплота сгорания - около 46 МДж/м3.

Кроме этого, следует отметить и химическую сторону параметров природного газа.

  1. Является сильно горючим веществом, способен самовоспламеняться при подаче искры и без нее при определенной температуре.
  2. Так как основной компонент - метан, то обладает всеми его химическими свойствами.
  3. Вступает в реакции замещения, дегидрирования, пиролиза, подвергается рефракции.
  4. Сжимается и сжижается при низких температурах и повышенном давлении.

Очевидно, что подобные физико-химические свойства природного газа определяют широкий спектр его использования в промышленности.

Особое свойство природного газа

Особое свойство рассматриваемого соединения - это способность образовывать газогидратные залежи, то есть находиться в твердом состоянии. Данные структуры представляют собой поглощенные молекулами пластовой воды объемы природного газа в соотношении 1/220. Поэтому подобные залежи являются чрезвычайно богатыми породами. Места их сосредоточения в природе:

  • глубинные поддонные слои Мирового океана;
  • скопления вечной мерзлоты.

Условия существования - гидродинамическое давление и низкие температуры.

Природные месторождения газа

Если говорить о содержании природного газа в природе, то можно выделить основные места концентрации:

  1. Это горная осадочная порода, полезное ископаемое, которое формируется многие тысячелетия анаэробным распадом органики в глубоких слоях земной коры.
  2. Растворен в подземных водах.
  3. Входит в состав нефти, формируя над ней нефтегазовую шапку.
  4. Залегает в виде газогидратов в слоях морского дна и точках крайнего Севера.

Если же обозначать распространение месторождений газа территориально, то лидерами являются следующие страны:

  • Россия.
  • Страны Персидского залива.
  • США.
  • Канада.
  • Иран.
  • Казахстан.
  • Азербайджан.
  • Узбекистан.
  • Норвегия.
  • Туркмения.
  • Нидерланды.

Добыча в мире составляет ежегодно примерно 3643 млрд м3 в год. Из них только на Россию приходится 673,46 млрд м3.

Температура природного газа, при которой он сгорает, равна 650 0С. То есть это тот показатель, при котором он способен самовоспламеняться. При этом выделяется большее количество тепловой энергии, чем при горении любого другого вида топлива. Естественно, это не могло не отразиться на областях использования данного вещества.

Именно поэтому многие страны, не имеющие природных запасов газа, вынуждены импортировать его из других государств. Транспортировка осуществляется несколькими способами:

Каждый из путей имеет свои преимущества и недостатки. В частности, морской и железнодорожный варианты более безопасные, так как химическая активность сжиженного газа в охлажденных баллонах гораздо ниже, чем в газообразном состоянии. По трубопроводу же увеличивается дальность передачи и ее объемы, кроме того, данный способ экономически выгоден.

Метан в составе природного газа

Газ метан является основным сырьевым компонентом в составе природной смеси. Его содержание колеблется в пределах 70-98%. Сам по себе это третий по распространенности на планете газ, который входит в состав нефти, межзвездного пространства, атмосферы других планет.

С точки зрения химии, газ метан - предельный углеводород, относящийся к ряду насыщенных алифатических соединений. Самый первый представитель алканов или парафинов. Химическая активность его невелика, он достаточно спокоен. Способен вступать в реакции:

  • замещения;
  • полного окисления;
  • конверсии.

Горит бесцветным некоптящим пламенем, запаха не имеет.

Виды природного газа

Существует три основных вида рассматриваемого вещества.

  1. Сухой природный газ - это такой, в котором метана более 97%. То есть содержание примесей, в том числе других углеводородов, крайне низкое.
  2. Тощий газ. Так называют смесь, содержащую незначительное количество тяжелых углеводородов.
  3. Жирный природный газ - тот, что богат на тяжелые углеводороды и неорганические компоненты (азот, водород, гелий, аргон, углекислый газ, сероводород).

Такое понятие, как коэффициент сухости газа, позволяет оценить качество сырья, из которого в дальнейшем будет изготовляться продукция. Ведь сам природный газ - это лишь база. Для разных отраслей промышленности нужен свой продукт, поэтому он проходит тщательную обработку и очистку в соответствии с конкретными требованиями.

Качество продукции

Качество природного газа напрямую зависит от состава. Если метан преобладает, то такой продукт будет самым лучшим как источник топлива. Если же больше всего в составе жирных углеводородов, то для химической промышленности такое сырье - наиболее подходящее.

Чтобы поставлять природный газ надлежащего качества, существуют специальные химические заводы, на которых он проходит тщательную очистку и обработку до дальнейшей отправки в конечный пункт. Методы работы будут зависеть от того, для каких целей предназначается продукт.

Так, например, если он будет использоваться для бытовых целей, то в него добавляют специальные вещества-одоранты, в частности меркаптаны. Это делается для того, чтобы газ стал иметь запах, ведь тогда в случае утечки его несложно будет обнаружить. Все меркаптаны имеют резкий неприятный запах.

Использование природного газа

Потребление природного газа осуществляется многими отраслями промышленности и объектами. Например:

  • ТЭЦ.
  • Котельные.
  • Газовые двигатели.
  • Химическое производство (изготовление пластмасс и прочих материалов).
  • Топливо для машин.
  • Обогрев жилых помещений.
  • Приготовление пищи.

Поэтому мировая добыча данного сырья так велика, и импорт и экспорт оцениваются в миллиарды долларов.

Экологический аспект

С точки зрения чистоты для природы нет лучшего источника топлива, чем природный газ. Экологические организации полностью одобряют его использование. Однако в последние годы сгорание природного газа приводит к накоплению одного из продуктов реакции - диоксида углерода.

А так как он относится к парниковым газам, то для планеты его скопления очень опасны. Поэтому ведутся множественные работы, разрабатываются проекты по защите экологического состояния планеты от надвигающегося парникового эффекта.

fb.ru

Какой газ в квартире - природный или сжиженный?

Какой газ используется в квартирах – природный или сжиженный? В кухонные плиты и системы для отопления помещений подается ископаемое топливо, что добывается из недр земли. Естественно, прежде чем оказаться в трубах, которые ведут к нашим домам, газ предварительное перерабатывается, в него добавляются вещества, которые позволяют сделать его состав оптимальным для применения в бытовых целях. Давайте же выясним, какой газ в квартире?

Состав

Какой газ в квартирах - пропан или метан? На самом деле горючее, что подается в дома, представляет собой смесь не только этих веществ, но и целой массы дополнительных субстанций. В действительности, его основу составляет метан. Содержание этого вещества в природном топливе может составлять от 70 до 98%.

И отвечая на вопрос, какой газ в квартире, можно сказать, что помимо метана в его состав входят следующие вещества:

  • пропан;
  • бутан;
  • сероводород;
  • углекислый газ;
  • пары воды.

Чтобы обезопасить такое топливо и сделать его более качественным, оптимальным для применения в бытовых целях, поставщики подвергают природное ископаемое очистке, убирают из него лишние примеси и только после этого продают потребителям.

Какое давление газа в квартире

Прежде чем природное ископаемое топливо загорается на кухонных плитах в наших домах, оно преодолевает десятки и сотни тысяч километров по магистральным газопроводам. Давление в таких газотранспортных артериях чрезвычайно высокое и может достигать показателя порядка 11,8 МПа.

Очевидно, что указанный показатель давления абсолютно не соответствует требованиям безопасности для бытового потребления. Поэтому топливо предварительно подается на газораспределительные станции. Здесь его давление снижают до 1,2 МПа. Кроме того, на таких станциях происходит очистка топлива.

Почему газ в квартирах обладает запахом

Какой газ поступает в квартиры? Каждый человек знает еще из школьной программы, что природное топливо не имеет цвета и запаха. Характерный аромат ему придают на все тех же газораспределительных станциях. В такое горючее добавляют так называемые одоранты – специфические вещества, которые распознаются человеческим обонянием и, соответственно, способствуют предупреждению опасной для жизни утечки газа в помещении. Они обладают довольно неприятным запахом. Последний напоминает нам дух, что исходит от гниющей капусты либо прелого сена.

Часто используемыми в данных целях одорантами являются такие вещества, как этантиол и этилмеркаптан. Эти субстанции представлены в виде пахучих жидкостей. При переработке природного газа, они распыляются в его структуру, что позволяет придать топливу характерный аромат.

Токсичен ли природный газ

Вот мы и выяснили, какой газ подается в квартиры. Теперь давайте рассмотрим, может ли такое топливо нанести вред здоровью.

Вопреки распространенным заблуждениям, газ, что подается в наши дома, абсолютно нетоксичен. Поэтому отравиться при его вдыхании чрезвычайно сложно. Впрочем, везде имеются исключения. Известны многочисленные случаи, когда потребители погибали в загазованных помещениях. Однако летальный исход в таких ситуациях наступал не от интоксикации, а от удушья. Дело в том, что молекулы углекислого газа, небольшой процент которого присутствует в составе природного топлива, способны вытеснять из пространства молекулы кислорода. Таким образом, дыхание становится затрудненным, а при полном заполнении помещения газом – и вовсе невозможным.

Взрывоопасность природного газа

Какой газ в квартире – взрывоопасный или нет? Концентрация горючего для возникновения эффекта его возгорания является крайне тонкой величиной. Зависит вероятность взрыва от состава газа, уровня давления, температуры окружающей среды.

Наступить опасная ситуация может лишь в случае, если концентрация природного топлива в помещении достигнет показателя в 15% по отношению к общей воздушной массе.

Самостоятельно определить процент газа в пространстве без применения специализированного измерительного оборудования невозможно. Поэтому, ощутив характерный аромат, необходимо перекрыть подачу топлива к бытовым приборам. Также крайне важно обесточить устройства, в работе которых используются электрические импульсы. Касается это не только бытовой техники, но также приборов, которые функционируют от аккумуляторов, батареек. Как показывает практика, при концентрации газа в помещении на уровне 15% от общего количества воздуха, его возгорание может наступить даже от работы мобильного телефона либо ноутбука.

При появлении запаха газа, необходимо незамедлительно открыть все двери и окна в помещении. Проветривание жилья позволит снизить вероятность возникновения взрыва до приезда аварийной службы.

Как обезопасить себя при эксплуатации газовых приборов

Чтобы природное топливо приносило лишь пользу, нужно следовать общеустановленным правилам использования газовых приборов:

  1. Рекомендуется ежегодно вызывать специалистов для проверки тяги в помещениях.
  2. Не стоит полностью изолировать вентиляционные решетки, а также окна и двери зимой.
  3. Перед отъездом из дома на длительное время, следует перекрывать все газовые краны и вентили, а также отключать электрические устройства.
  4. Нельзя оставлять функционирующие газовые приборы без присмотра.
  5. Ощутив запах газа, следует избегать включения света и использования открытого огня.

О чем свидетельствует тот или иной цвет огня в конфорке

Оттенок пламени в газовой конфорке может рассказать об особенностях сгорания природного топлива. Если огонь имеет насыщенный голубой цвет однородной структуры, значит, газ полностью сгорает. При этом в пространство выделяется максимально возможное количество тепла.

А что происходит в случаях, когда пламя в конфорке приобретает красноватый либо яркий желтый оттенок? Если газ при горении имеет любой другой цвет, отличный от голубого, это может свидетельствовать о том, что к горелке поступает ограниченное количество воздуха, либо газ обладает низким качеством. В таком случае ископаемое топливо недостаточно эффективно осуществляет подогрев. Чтобы устранить указанный недостаток, достаточно вызвать квалифицированного специалиста, обратившись в газовое хозяйство.

Как видно, цвет газа при горении способен дать полезную информацию. Желтоватый либо красноватый оттенок топлива при воспламенении подсказывает о подаче в дом газа низкой плотности. И так как обогревательные котлы, рассчитаны на потребление топлива определенного качества, то при снижении плотности газа оборудование будет нуждаться в большем количестве вещества для создания комфортной температуры.

Фактически, желтые либо красные язычки огня на воспламенителе говорят о том, что приборами израсходуется больше горючего. Виновниками такого упущения могут стать управляющие компании. Некоторые из них намеренно снижают содержание в газе углекислоты и углеводорода. Поэтому при изменении цвета пламени на газовой конфорке, пользователи имеют право обращаться к поставщику за разъяснениями.

В заключение

Вот мы и разобрались, какой газ в квартире, и ответили на целый ряд других вопросов. Напоследок стоит отметить, что использование качественного природного топлива является крайне важным моментом, что отражается на стабильной работе и эффективности функционирования оборудования. К сожалению, потребители не имеют возможности самостоятельно определить, насколько качественное горючее подается в дом. Поэтому важно периодически привлекать специалистов для проверки газового оборудования.

fb.ru


Смотрите также